The Monty Hall Problem

(Categoria Matematica, Autor Alexandra Gartu)

In acest articol nu vom discuta despre algoritmi clasici, structuri de date sau competitii de informatica. Vreau sa va prezint o problema de logica ce presupune doar cunostinte elementare de matematica. Scopul este de a ne "antrena" mintea / perspicacitatea, iar legatura cu informatica vine din faptul ca multe din problemele pe care le rezolvati la informatica presupun idei mai mult decat cunostinte clasice.

Problema

Problema celor trei porti se refera la faimoasa situatie din show-urile televizate (in speta "Let's Make a Deal", prezentat de americanul Monty Hall) cand unul dintre concurenti trebuie sa aleaga una din cele 3 porti: in spatele a doua dintre ele se afla cate o capra, iar in spatele celei de-a treia se afla un Rolls Royce. Dupa ce concurentul a ales prima data, prezentatorul (stiind unde se gaseste Rolls Royce-ul) ii arata una din capre, din spatele uneia din usile pe care NU le-a ales. Intrebarea care se pune este daca respectivul concurent ar trebui sau nu sa-si schimbe optiunea dupa aceasta dezvaluire.

Argumentul 1

Initial, sansele de a alege poarta corecta sunt de 1/3. Faptul ca ti-a fost aratata o capra nu schimba cu nimic probabilitatea ca prima oara sa fi ales corect. Sansele ca prima decizie sa fie corecta inca sunt de 1/3, deci ar trebui sa iti modifici decizia fiindca acum in spatele celei de-a treia porti exista 2/3 sanse sa se afle un Rolls Royce.

Exista asadar doua cazuri:

  1. ai ghicit corect prima oara - sanse 1/3
  2. ai ghicit incorect prima oara - sanse 2/3

Sa presupunem acum ca iti schimbi decizia:

  1. avusesei dreptate la prima decizie - sansele sa pierzi sunt 1/3
  2. gresisei prima oara - sansele sa castigi sunt 2/3

Argumentul 2

Modificam ipoteza considerand ca avem initial 100 de usi. Alegem una dintre ele avand 99/100 sanse sa ghicim gresit. Din nou moderatorul emisiunii stie unde este Rolls Royce-ul, asa ca ne arata 98 de capre. Dupa acest pas inca nu stim in spatele careia din usi se afla masina: asta inseamna ca sansele de a ghici sunt 1/2? In mod cert, nu: sansa de a ghici a fost initial si a ramas 1/100. Deci, in mod sigur este indicat sa schimbam decizia initiala.

Putina matematica... sau Argumentul 3

Sa numim cele 3 porti A, B, C. Sa presupunem ca ai ales poarta A si ca Monty Hall ti-a aratat o capra in spatele usii B.

  • Probabilitatea ca masina sa se afle in spatele portii X: P(X) = 1/3
  • Probabilitatea ca moderatorul sa deschida poarta B daca premiul se afla la A: P(moderatorul deschide B | A) = 1/2
  • Probabilitatea ca moderatorul sa deschida poarta B daca premiul se afla la B: P(moderatorul deschide B | B) = 0
  • Probabilitatea ca moderatorul sa deschida poarta B daca premiul se afla la C: P(moderatorul deschide B | C) = 1

Concluzii

Probabilitatea ca moderatorul sa deschida poarta B este:

P(moderatorul deschide B) =
P(A) * P(moderatorul deschide B | A) +
P(B) * P(moderatorul deschide B | B) +
P(C) * P(moderatorul deschide B | C)
= 1/6 + 0 + 1/3 = 1/2

P(A | moderatorul deschide B) = P(A) * P(moderatorul deschide B | A) / P(moderatorul deschide B)
= (1/6) / (1/2) = 1/3

P(C | moderatorul deschide B) = P(C) * P(moderatorul deschide B | C) / P(moderatorul deschide B)
= (1/3) / (1/2) = 2/3

Deci, probabilitatea ca in spatele usii C sa se afle o masina este 2/3.

Putina istorie...

Problema a fost publicata mai intai de Martin Gardener in octombrie 1959 si se referea la 3 detinuti dintre care unul, ales aleator, va fi eliberat. Sa numim cei trei prizonieri A, B, C. A ii cere gardianului sa-i spuna care dintre colegii lui NU va fi eliberat. Desigur, asta nu inseamna ca sansele lui de a fi eliberat cresc (ele fiind tot 1/3) in timp ce sansele celui de-al treilea condamnat (cel nenominalizat) cresc la 2/3.

Marilyn Vos Savant's, considerata omul cu cel mai ridicat IQ pana in momentul de fata, a publicat aceasta problema, in prima forma din acest articol in anul 1990 in rubrica sa din Parade Magazine. Solutia ei (cel de-al doilea argument) a fost contestata in numeroase randuri (a primit peste 10000 de scrisori care sustineau ca demonstratia este eronata) si a aparut pe prima pagina in 21 iulie 1991 in New York Times ("Her answer... has been debated in the halls of the C.I.A. and the barracks of fighter pilots in the Persian Gulf. It has been analyzed by mathematicians at M.I.T. and computer programmers at Los Alamos National Laboratory in New Mexico. It has been tested in classes ranging from second grade to graduate level at more than 1000 schools across the country.").

remote content