Pagini recente » Cod sursa (job #3229728) | Cod sursa (job #1674126) | Cod sursa (job #70179) | Cod sursa (job #3285831) | Cod sursa (job #2965871)
#include <bits/stdc++.h>
using namespace std;
ifstream fin("harta.in");
ofstream fout("harta.out");
int N, n, m, k, x, y, maxflow;
vector<pair<int, int>> g[100005];
queue<int> q;
bool viz[20007];
int parent[20007];
void read()
{
fin >> n;
/// S=0, multimea A = {1,2...,n}, multimea B = {n+1,...,n+n}, T=n+m+1
N = 2*n + 1;
for(int i = 1; i <= n; ++i)
{
fin >> x >> y;
/// s la A
g[0].emplace_back(i,x);
g[i].emplace_back(0, 0);
/// B la t
g[i+n].emplace_back(N,y);
g[N].emplace_back(i+n, 0);
}
/// A la B
for(int i = 1; i <= n; ++i)
for(int j = n + 1; j <= 2*n; ++j){
if(j - i != n)
g[i].emplace_back(j,1);
g[j].emplace_back(i, 0);
}
}
void gafis(){
for(int i = 0; i <= N; ++i)
for(auto nod : g[i])
fout << i << " " << nod.first<< " " << nod.second << '\n';
}
void afis(){
for(int i = 1; i <= n; ++i){
for(auto nod : g[i]){
if(!nod.second && nod.first > n)
fout << i <<" " << nod.first - n << '\n';
}
}
}
int bfs()
{
/// folosim bfs pentru a verifica daca mai este un drum de la s la t
/// folosim vectorul parent pentru a putea reconstrui drumul
/// reinitializam tot
while (!q.empty())
q.pop();
for (int i = 0; i <= N; i++)
{
parent[i] = 0;
viz[i] = false;
}
q.push(0);
viz[0] = true;
/// bfs
while (!q.empty())
{
auto nod = q.front();
q.pop();
/// n reprezinta destinatia deci returnam true deoarece am gasit drum
if (nod == N) return true;
for (auto p : g[nod])
if (!viz[p.first] && p.second > 0)
{
q.push(p.first);
parent[p.first] = nod;
viz[p.first] = true;
}
}
return false;
}
inline int flux()
{
/// cat timp avem drumuri
while (bfs())
{
for (int i = 0; i <= N; i++)
{
for(auto p : g[i]){
if(p.first == N && p.second > 0 && viz[i])
{
int leaf = i;
/// construim drumul
vector<int> path;
path.push_back(N);
path.push_back(leaf);
int nod = parent[leaf];
if (nod == 0)
path.push_back(nod);
else {
while (nod != 0) {
path.push_back(nod);
nod = parent[nod];
}
path.push_back(0);
}
reverse(path.begin(), path.end());
/// dupa ce am gasit drumul, vedem care este flow-ul minim si adaugam la rezultatul final
int flow_minim = INT_MAX;
for (int j = 0; j < path.size() - 1; j++) {
int current_flow;
for(auto p : g[path[j]])
if(p.first == path[j + 1])
current_flow = p.second;
flow_minim = min(flow_minim, current_flow);
}
maxflow += flow_minim;
/// pt reconstruirea flow-ului
/// scadem flow_minim din muchiile inspre destinatie si adunam pe muchiile in directie opusa
for (int j = 0; j < path.size() - 1; j++) {
for (int it = 0; it < g[path[j]].size(); ++it)
if(g[path[j]][it].first == path[j + 1])
g[path[j]][it].second -= flow_minim;
/// pt graful rezidual
for(int it = 0; it < g[path[j+1]].size(); ++it)
if(g[path[j+1]][it].first == path[j])
g[path[j+1]][it].second += flow_minim;
}
}
}
}
}
return maxflow;
}
int main()
{
read();
fout << flux() << "\n";
afis();
return 0;
}