Pagini recente » Cod sursa (job #435372) | Cod sursa (job #2240558) | Cod sursa (job #2707693) | Cod sursa (job #2977984) | Cod sursa (job #2945536)
#include <iostream>
#include <vector>
#include <fstream>
#include <algorithm>
using namespace std;
// rezolvare APM cu Kruskal
// O(E log E) = O(E log V)
// E = numarul de muchii
// V = numarul de noduri
//pas1: sortam muchiile crescator dupa cost
//pas2: parcurgem muchiile in ordine crescatoare
// daca muchia curenta nu formeaza ciclu cu multimea APM curenta
// o adaugam in APM
// altfel o ignoram
//pas3: afisam APM
ifstream f("apm.in");
ofstream g("apm.out");
const int NMAX = 100005;
const int MMAX = 100005;
int N, M, Total, TT[MMAX],RG[MMAX],k;
struct Muchie
{
int x, y, cost;
} V[MMAX];
pair <int, int> P[MMAX];
bool compare(Muchie a, Muchie b)
{
return a.cost < b.cost;
}
void read()
{
f >> N >> M;
for (int i = 1; i <= M; i++)
f >> V[i].x >> V[i].y >> V[i].cost;
//sortam muchiile crescator dupa cost
sort(V + 1, V + M + 1, compare);
for(int i = 1;i<=N;i++)
{
TT[i] = i;
RG[i] = 1;
}
}
int Find(int Nod)
{
if (TT[Nod] == Nod)
return Nod;
return TT[Nod] = Find(TT[Nod]);
}
void Unire(int x, int y)
{
if(RG[x] > RG[y])
TT[y] = x;
if(RG[x] < RG[y])
TT[x] = y;
if(RG[x] == RG[y])
{
TT[x] = y;
RG[y]++;
}
}
void Rezolvare()
{
for(int i=1;i<=M;i++)
{
int tatal_x = Find(V[i].x);
int tatal_y = Find(V[i].y);
if(tatal_x != tatal_y)
{
Unire(tatal_x,tatal_y);
P[++k].first = V[i].x;
P[k].second = V[i].y;
Total += V[i].cost;
}
}
}
void afisare()
{
g << Total << endl;
g << N - 1 << endl;
for(int i=1;i<=k;i++)
g << P[i].first << " " << P[i].second << endl;
}
int main()
{
read();
Rezolvare();
afisare();
return 0;
}