#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <unordered_set>
#include <stack>
#include <set>
#include <algorithm>
using namespace std;
//CLASA DE BAZA GRAPH
class Graph{
//DATELE MEMBRE
protected:
int m_number_of_nodes;
//numarul de noduri
//METODELE
public:
//CONSTRUCTORI
//constructor cu 1 parametru: numarul de noduri
Graph(int number_of_nodes);
//constructor fara parametru
Graph();
//ALGORITMI
//functia de citire virtuala -> implementata diferit in fiecare dintre clase
virtual void read_graph(char *file);
//parcurgerea in latime BFS -> primeste un nod sursa si returneaza un vector in care pe pozitia i se afla numarul minim de muchii prin care ajungem
//de la nodul dat la nodul i
virtual vector<int> BFS(int node);
//parcurgerea in adancime DFS -> avem 2 implementari, una fara vectorul de noduri vizitate(si vom considera la inceput toate nodurile vizitate)
//si una care primeste nodul sursa si, optional, un vector cu nodurile vizitate; daca acesta nu este dat, se vor considera
//toate nodurile nevizitate
virtual void DFS(int node);
virtual void DFS(int node, vector<int>& visited);
//metoda hakimi -> intoarce true daca se poate construi un graf din secventa data ca argument si false in caz contrar
bool hakimi(vector<int> v);
};
//METODE PUBLICE
//CONSTRUCTORI
//constructor cu 1 parametru: numarul de noduri
Graph::Graph(int number_of_nodes){
m_number_of_nodes = number_of_nodes;
}
//constructor fara parametru
Graph::Graph() {
m_number_of_nodes = 0;
}
//ALGORITMI
//citirea grafului -> nu contine nimic; este virtuala si implementata diferit in fiecare dintre clasele mostenitoare
void Graph::read_graph(char *file) {
return;
}
//parcurgerea BFS -> nu contine nimic; este tot virtuala
vector<int> Graph::BFS(int source) {
return vector<int>();
}
//parcurgerea DFS -> tot virtuala
void Graph::DFS(int node){
return;
}
void Graph::DFS(int node, vector<int> &visited) {
return;
}
//algoritmul Havel Hakimi
bool Graph::hakimi(vector<int> v){
//daca suma gradelor nodurilor nu este para, automat nu se va putea face un graf din secventa, asa ca verificam acest lucru mai intai
//daca vreuna din valorile din secventa este mai mare sau egala cu numarul de noduri, automat nu va putea fi epuizat gradul acelui nod si, implicit,
//nu se va putea construi graf din secventa v, asa ca verificam si acest lucru
int sum =0;
for(int i = 0; i < v.size(); i++){
if(v[i] >= v.size()) return false;
sum = sum + v[i];
}
if(sum % 2 == 1) return false;
//sortam descrescator gradele din secventa
sort(v.begin(), v.end(), greater<int>());
//incercam sa epuizam gradele, cat timp nu s-a ajuns ca sa fie cel mai mare grad 0(acest lucru inseamna ca) au fost epuizate toate gradele cu succes
while(v[0] != 0){
//parcurgem toate nodurile si le legam cu nodul cu gradul maxim
// (scazand gradul fiecaruia, practic ducem cate o muchie din fiecare catre nodul cu gradul maxim)
for(int i = 0; i <= v[0]; i++){
v[i]--;
//daca se ajunge la valori negative pentru grad inseamna ca graful nu poate fi format
if(v[i] < 0) return false;
}
//actualizam gradul nodului al carui grad l-am epuizat; la urmatoarea sortare el va ajunge ultimul, alaturi de restul care au deja gradele epuizate
//raman in fata cele care nu si-au epuizat inca gradul, in ordine descrescatoare
v[0] = 0;
sort(v.begin(), v.end(), greater<int>());
}
return true;
}
//CLASA GRAF NEORIENTAT
class Undirected_graph: protected Graph{
protected:
vector< vector<int> > m_adjancency_list;
public:
//CONSTRUCTORI
//constructorul cu 2 parametri: numarul de noduri si lista de adiacenta
Undirected_graph(int number_of_nodes, const vector<vector<int>> &adjacency_list);
//constructorul fara parametri
Undirected_graph();
//ALGORITMI
//citirea grafului
void read_graph(char *file);
//parcurgerea in adancime DFS care primeste nodul sursa doar
void DFS(int node);
//parcurgerea in adancime DFS care primeste nodul sursa si vectorul de noduri vizitate
void DFS(int node, vector<int>& visited);
//numararea componentelor conexe
int number_of_connected_components();
//returnarea unui vector cu componentele conexe
vector< unordered_set<int> > generate_biconnected_components();
//gasirea muchiilor critice
vector< vector<int> > find_critical_edges();
//setter pentru numarul de noduri
void set_number_of_nodes(int n);
//setter pentru listele de adiacenta
void set_adjacency_list(vector<vector<int>> adjacency_list);
private:
//DFS-ul folosit in gasirea componentelor biconexe
void DFSBiconnected(int current_node, int prec, int step, vector<int>& arrival_values, vector<int>& low_link_values,vector<unordered_set<int>>& biconnected_components,stack<pair <int, int>>& current_biconnected_components);
//DFS-ul folosit in gasirea muchiilor critice
void DFSCriticals(int current_node, int& step, vector<int>& visited, vector<int>& prec, vector<int>& low_link_values, vector<int>& arrival_times, vector< vector<int> >& critical_edges);
};
//METODE PUBLICE GRAFURI NEORIENTATE
//CONSTRUCTORI
//constructorul cu 2 parametri: numarul de noduri si listele de adiacenta
Undirected_graph::Undirected_graph(int number_of_nodes, const vector<vector<int>> &adjacency_list) : Graph(
number_of_nodes), m_adjancency_list(adjacency_list) {}
//constructorul fara parametri
Undirected_graph::Undirected_graph() {
m_number_of_nodes = 0;
m_adjancency_list.resize(m_number_of_nodes);
}
//ALGORITMI
//citirea grafului neorientat fara costuri
void Undirected_graph::read_graph(char *file) {
ifstream f(file);
vector<int> aux;
int number_edges;
//citim numarul de noduri si numarul de muchii
f>>this->m_number_of_nodes >> number_edges;
//rezervam in matricea de vecini spatiu pentru numarul de noduri ale grafului
this->m_adjancency_list.assign(this->m_number_of_nodes + 1, aux);
//citim fiecare muchie si o marcam pentru ambele capete
for(int i = 0; i < number_edges; i++){
int x,y;
f >> x >> y;
this->m_adjancency_list[x].push_back(y);
this->m_adjancency_list[y].push_back(x);
}
}
//parcurgerea DFS primind doar nodul sursa
void Undirected_graph::DFS(int node) {
//pornim cu ideea ca toate nodurile sunt nevizitate initial
vector<int> visited;
visited.assign(m_number_of_nodes + 1, 0);
//marcam nodul curent ca vizitat
visited[node] = 1;
//parcurgem vecinii si pentru fiecare vecin nevizitat aplicam recursiv DFS
for(int i = 0; i < this->m_adjancency_list[node].size(); i++){
if(visited[ this->m_adjancency_list[node][i] ] == 0){
DFS( this->m_adjancency_list[node][i], visited);
}
}
}
//parcurgerea DFS primind si vectorul de noduri vizitate
void Undirected_graph::DFS(int node, vector<int> &visited) {
//marcam nodul curent ca vizitat
visited[node] = 1;
//parcurgem vecinii si pentru fiecare vecin nevizitat aplicam recursiv DFS
for(int i = 0; i < this->m_adjancency_list[node].size(); i++){
if(visited[ this->m_adjancency_list[node][i] ] == 0){
DFS( this->m_adjancency_list[node][i], visited);
}
}
}
void Undirected_graph::set_number_of_nodes(int n){
m_number_of_nodes = n;
}
void Undirected_graph::set_adjacency_list(vector< vector<int> > connections){
m_adjancency_list.assign(m_number_of_nodes + 1, vector<int>());
for(int i = 0 ; i < connections.size() ; i++){
m_adjancency_list[connections[i][0]].push_back(connections[i][1]);
m_adjancency_list[connections[i][1]].push_back(connections[i][0]);
}
}
//numararea componentelor conexe
int Undirected_graph::number_of_connected_components() {
//numarul componentelor conexe il vom tine in nr
int number = 0;
//initial toate nodurile sunt nevizitate
vector<int> visited;
visited.assign(m_number_of_nodes + 1, 0);
//pentru fiecare node nevizitat parcurgem din copil in copil prin DFS; de fiecare data cand dam de un node nevizitat inseamna ca avem o noua componenta conexa
for(int node = 1; node <= this->m_number_of_nodes; node++){
if(visited[node] == 0){
number++;
DFS(node, visited);
}
}
return number;
}
//returnarea unui vector in care pe fiecare pozitie se afla o componenta biconexa
vector< unordered_set<int> >Undirected_graph::generate_biconnected_components(){
vector<unordered_set<int>> biconnected_components;
stack<pair <int, int>> current_biconnected_component;
vector<int> arrival_value;
vector<int> low_link_values;
//initializam timpii de sosire si nivelul cel mai de sus pentru fiecare node
arrival_value.assign(this->m_number_of_nodes + 1, -1);
low_link_values.resize(this->m_number_of_nodes + 1);
//facem DFS
DFSBiconnected(1,0,0,arrival_value,low_link_values,biconnected_components,current_biconnected_component);
return biconnected_components;
}
//returnarea unui vector in care pe fiecare pozitie se afla o muchie critica
vector< vector<int> > Undirected_graph::find_critical_edges() {
int current_arrival_time = 0;
vector< vector<int> > critical_edges;
vector<int> visited;
vector<int> prec;
vector<int> low_link_values;
vector<int> arrival_times;
//initializam vectorul de noduri vizitate: initial toate nodurile grafului sunt nevizitate
visited.assign(m_number_of_nodes + 1, 0);
//rezervam loc pentru fiecare nod al grafului in vectorul prec, care retine pe fiecare pozitie i precedentul nodului i
prec.assign(m_number_of_nodes + 1, -1);
//rezervam loc pentru fiecare nod al grafului in vectorul low_link_values, in care pe fiecare pozitie i avem nivelul cel mai de sus la care putem ajunge
//din nodul i
low_link_values.resize(m_number_of_nodes + 1);
//initializam vectorul cu timpiii de ajungere pentru fiecare nod in parte cu 0
arrival_times.resize(m_number_of_nodes + 1);
//parcurgem nodurile grafului si, pentru fiecare nod nevizitat, facem DFS
for(int i = 0; i < m_number_of_nodes; i++){
if(visited[i] == 0){
DFSCriticals(i, current_arrival_time, visited, prec, low_link_values, arrival_times, critical_edges);
}
}
return critical_edges;
}
//METODE PRIVATE GRAFURI NEORIENTATE
//DFS-ul folosit in gasirea componentelor biconexe
void Undirected_graph::DFSBiconnected(int current_node, int prec, int step, vector<int>& arrival_values, vector<int>& low_link_values, vector<unordered_set<int>>& biconnected_components, stack<pair <int, int>>& current_biconnected_components){
//marcam ca vizitat nodul curent
arrival_values[current_node] = step;
//momentan nivelul minim de intoarcere e nivelul curent, adica pasul
low_link_values[current_node] = step;
//parcurgem vecinii nodului curent
for(int i = 0; i < this->m_adjancency_list[current_node].size(); i++){
int neighbor = this->m_adjancency_list[current_node][i];
if(neighbor != prec){
//verificam pe ce fel de muchie suntem
//daca vecinul curent a mai fost vizitat inseamna ca am dat de o muchie de intoarcere, altfel suntem pe o muchie in jos
if(arrival_values[neighbor] == -1){
//am dat de o noua muchie din componenta biconexa curenta, asa ca o adaugam in stiva
current_biconnected_components.push(make_pair(current_node, neighbor));
//apelam DFS pentru vecinul curent
DFSBiconnected(neighbor, current_node, step + 1,arrival_values,low_link_values,biconnected_components,current_biconnected_components);
//verificam daca atunci cand ne am dus mai departe in graf
// am dat de o muchie de intoarcere care ne duce mai sus decat ne ducea nodul acesta inainte
if(low_link_values[current_node] > low_link_values[neighbor]){
low_link_values[current_node] = low_link_values[neighbor];
}
//verificam daca am ajuns la finalul componentei biconexe
if(low_link_values[neighbor] >= arrival_values[current_node]){
//trebuie sa adaugam noua componenta biconexa in vectorul de componenete biconexe
//si sa golim stiva cu muchiile componentei biconexe curente
unordered_set<int> aux;
int aux1, aux2;
//formam componenta biconexa in aux
do{
aux1 = current_biconnected_components.top().first;
aux2 = current_biconnected_components.top().second;
aux.insert(aux1);
aux.insert(aux2);
current_biconnected_components.pop();
} while (aux1 != current_node || aux2 != neighbor);
biconnected_components.push_back(aux);
}
}else{
//avem o muchie de intoarcere, trebuie sa verificam daca nu cumva duce mai sus
if(low_link_values[current_node] > arrival_values[neighbor]){
low_link_values[current_node] = arrival_values[neighbor];
}
}
}
}
}
//DFS-ul folosit pentru gasirea muchiilor critice
void Undirected_graph::DFSCriticals(int current_node, int& step, vector<int>& visited, vector<int>& prec, vector<int>& low_link_values, vector<int>& arrival_times, vector<vector<int>>& critical_edges) {
//marcam nodul ca vizitat in vectorul visited, actualizam timpul lui de ajungere iar low link value momentan e fix timpul de ajungere
visited[current_node] = 1;
arrival_times[current_node] = step;
low_link_values[current_node] = step;
//crestem timpul de ajungere pentru urmatorul DFS
step++;
//parcurgem vecinii nodului
for(int i = 0; i < m_adjancency_list[current_node].size(); i++){
int neighbor = m_adjancency_list[current_node][i];
//pentru fiecare vecin nevizitat, ii actualizam precedentul ca fiind nodul ai carui vecini ii parcurgem si intram in parcurgerea vecinilor vecinului
if (visited[neighbor] == 0){
prec[neighbor] = current_node;
DFSCriticals(neighbor, step, visited, prec, low_link_values, arrival_times, critical_edges);
//la iesirea din DFS incercam sa minimizam low link value pentru nodul curent, in cazul in care vecinul poate ajunge la un node mai indepartat
if(low_link_values[current_node] > low_link_values[neighbor]){
low_link_values[current_node] = low_link_values[neighbor];
}
//in cazul in care este o muchie critica, o adaugam in vectorul de muchii critice
if (low_link_values[neighbor] > arrival_times[current_node]){
critical_edges.push_back({current_node, neighbor});
}
}
else{
//pentru fiecare vecin deja vizitat incercam sa minimzam low link value pentru nodul nostru
if (neighbor != prec[current_node]){
if(low_link_values[current_node] > arrival_times[neighbor]){
low_link_values[current_node] = arrival_times[neighbor];
}
}
}
}
}
//CLASA GRAF NEORIENTAT BIPARTIT
class Undirected_graph_coupler: Undirected_graph{
private:
int m_number_of_left_nodes;
public:
//CONSTRUCTORI
//constructor cu 3 parametri: numarul de noduri, listele de adiacenta, si numarul de noduri din multimea din stanga
Undirected_graph_coupler(int number_of_nodes, const vector<vector<int>> &adjacency_list, int number_of_left_nodes);
//constructor fara parametri
Undirected_graph_coupler();
//ALGORITMI
//citirea grafului
void read_graph(char *file);
//returnarea cuplajului maxim
vector< pair<int, int> > hopcroft_karp();
private:
//DFS-ul folosit la aflarea cuplajului maxim
bool DFSCoupler(int node, vector<int>& left_pair, vector<int>& right_pair, vector<int>& visited);
};
//METODE PUBLICE GRAF NEORIENTAT BIPARTIT
//CONSTRUCTORI
//constructor cu 3 parametri: numarul de noduri, listele de adiacenta, numarul de noduri din multimea din stanga
Undirected_graph_coupler::Undirected_graph_coupler(int number_of_nodes, const vector<vector<int>> &adjacency_list,
int number_of_left_nodes) : Undirected_graph(number_of_nodes, adjacency_list),
m_number_of_left_nodes(number_of_left_nodes) {}
//constructor fara parametri
Undirected_graph_coupler::Undirected_graph_coupler() {
m_number_of_left_nodes = 0;
m_number_of_nodes = 0;
m_adjancency_list.resize(m_number_of_left_nodes);
}
//ALGORITMI
//citirea grafului
void Undirected_graph_coupler::read_graph(char *file) {
ifstream f(file);
int number_of_right_nodes, number_of_edges;
//citim numarul de noduri din stanga si din dreapta
f >> m_number_of_left_nodes >> number_of_right_nodes;
//numarul de noduri ale grafului va fi suma
m_number_of_nodes = m_number_of_left_nodes + number_of_right_nodes;
//citim numarul de muchii
f >> number_of_edges;
//initializam matricea de vecini cu numaruk de noduri din stanga ale grafului nostru, deoarece matricea va retine vecinii din dreapta ai nodurilor din stanga
m_adjancency_list.assign(m_number_of_left_nodes + 1, vector<int>());
//citim muchie cu muchie si o pe fiecare adaugam in matricea de vecini
for(int i = 0; i < number_of_edges; i++){
int x, y;
f >> x >> y;
m_adjancency_list[x].push_back(y);
}
}
//algoritmul hopcroft_karp() -> returneaza un vector in care pe fiecare pozitie se afla cate o muchie din cuplajul maxim al grafului
vector< pair<int,int> > Undirected_graph_coupler::hopcroft_karp() {
vector< pair<int,int> > maximum_matching;
vector<int> right_pair;
vector<int> left_pair;
vector<int> distances;
vector<int> visited;
//initializam vectorul de perechi din dreapta pentru numarul de noduri din stanga; cand valoarea e -1, inseamna ca acel nod nu are pereche in dreapta
right_pair.assign(m_number_of_left_nodes + 1, -1);
//initializam vectorul de perechi din stanga pentru numarul de noduri din dreapta; cand valoarea e -1, inseamna ca acel nod nu are pereche in stanga
left_pair.assign(m_number_of_nodes - m_number_of_left_nodes + 2, -1);
//initializam vectorul de distante pentru numarul de noduri din stanga
distances.assign(m_number_of_left_nodes + 1, 0);
//vom tot actualiza cuplajul maxim atata timp cat avem un lant inca negasit
//vom retine intr-o variabila daca mai avem lanturi proaspat gasite sau nu; ne vom opri cand nu mai gasim niciun lant
int enough = 0;
while(enough == 0){
//pornim cu ideea ca nu vom mai gasi lant
enough = 1;
//reinitiliazam toate nodurile ca neviyitate, intrucat incepem cu un nou lant
visited.assign(m_number_of_nodes + 1, 0);
//cautam printre nodurile din stanga un nod care nu are inca pereche
for(int i = 1; i <= m_number_of_left_nodes; i++){
//testam daca nodul are pereche
if(right_pair[i] == -1){
//incercam sa creem un lant din acest nod fara pereche;
if(this->DFSCoupler(i,left_pair,right_pair, visited)){
//daca am reusit, atunci marcam ca am gasit un lant
enough = 0;
}
}
}
}
//formam cuplajul-rezultat: pentru toate nodurile care au pereche in dreapta, inseamna ca fac parte din cuplaj asa ca le adaugam in vectorul de perechi
//impreuna cu perechea lor din dreapta
for(int i = 1; i <= m_number_of_left_nodes; i++){
if(right_pair[i] != -1){
maximum_matching.push_back(make_pair(i, right_pair[i]));
}
}
return maximum_matching;
}
//METODE PRIVATE GRAF NEORIENTAT BIPARTIT
//DFS-ul folosit la calcularea cuplajului maxim -> returneaza true daca reusesc sa formez un lant din nodul dat in dreapta
bool Undirected_graph_coupler::DFSCoupler(int node, vector<int>& left_pair, vector<int>& right_pair, vector<int>& visited) {
//testam daca nodul a mai fost vizitat in cuplajul pe care incercam sa il facem
if(visited[node] != 0){
return 0;
}
//marcam nodul ca vizitat
visited[node] = 1;
//parcurgem vecinii nodului si, daca gasim printre ei unul care nu are pereche in stanga, il unim cu nodul nostru
for(int i = 0; i < m_adjancency_list[node].size(); i++){
int neighbor;
//luam vecinul
neighbor = m_adjancency_list[node][i];
//verificam daca nodul nu are pereche in stanga
if(left_pair[neighbor] == -1){
//daca vecinul nu are deja pereche in stanga, il cuplam cu nodul nostru din stanga, marcandu-le amandorura noua pereche in vectorul corespunzator fiecaruia
right_pair[node] = neighbor;
left_pair[neighbor] = node;
//returnam 1 pentru ca am avut succes in a construi un nou lant din nodul dat
return 1;
}
}
//daca nu am gasit niciun vecin care sa nu aiba pereche in stanga, inseamna ca e posibil sa trebuiasca sa legam nodul de un lant deja existent, nu doar de un alt nod
//parcurgem vecinii si, daca gasim un vecin din care avem un lant, sudam nodul nostru de lantul respectiv, prin cuplarea nodului cu vecinul din care porneste lantul
for(int i = 0; i < m_adjancency_list[node].size(); i++){
int neighbor;
//luam vecinul
neighbor = m_adjancency_list[node][i];
//verificam daca vecinul face parte dintr-un lant
if(DFSCoupler(left_pair[neighbor],left_pair, right_pair, visited)){
//in cazul in care DFS a returnat 1 si vecinul face parte dintr-un lant, alipim nodul nostru la lantul respectiv <=> cuplam nodul nostru cu vecinul
//si returnam 1 pentru ca am reusit sa obtinem un lant
left_pair[neighbor] = node;
right_pair[node] = neighbor;
return 1;
}
}
//returnam esecul: nu mai putem forma lant din nodul dat in niciun fel
return 0;
}
//CLASA ORIENTED GRAPH
class Oriented_graph: protected Graph{
protected:
vector< vector<int> > m_adjancency_list;
public:
//CONSTRUCTORI
//constructor cu 2 parametri: numarul de noduri si listele de adiacenta
Oriented_graph(int number_of_nodes, const vector<vector<int>> &adjacency_list);
//constructor fara parametri
Oriented_graph();
//ALGORITMI
//citirea grafului
void read_graph(char *file);
//citirea grafului cu un nod sursa -> imi returneaza nodul sursa
int read_graph_with_starting_node(char *file);
//parcurgerea BFS(int nod) -> returneaza un vector in care pe fiecare pozitie i se afla numarul minim de arce ce trebuie parcurse pentru a ajunge
//din nodul sursa dat in nodul i
vector<int> BFS(int source);
//returnarea unui vector de componente tare conexe
vector<vector<int>> create_strongly_connected_components();
//tarjan cu argumente
void tarjan(int node,stack<int>& current_component_stack,vector<int>& is_in_stack,vector<int>& arrival_values, int& current_arrival_value, vector<int>& low_link_values, vector<vector<int>>& strongly_connected_components);
//sortarea topoligca -> returneaza o stiva in care avem nodurile puse in ordinea data de sortarea topologica
stack<int> topological_sort();
private:
//DFS-ul folosit in sortarea topologica
void DFS_topological_sort(int node, stack<int>& sort, vector<int>& visited);
};
//METODE PUBLICE ORIENTED GRAPHS
//CONSTRUCTORI
//constructorul cu 2 parametri: numarul de noduri si listele de adiacenta
Oriented_graph::Oriented_graph(int number_of_nodes, const vector<vector<int>> &adjacency_list) : Graph(number_of_nodes),
m_adjancency_list(adjacency_list) {}
//constructorul fara marametri
Oriented_graph::Oriented_graph() {
m_number_of_nodes = 0;
m_adjancency_list.resize(m_number_of_nodes);
}
//ALGORITMI
//citirea grafului orientat (fara costuri)
void Oriented_graph::read_graph(char *file) {
ifstream f(file);
vector<int> aux;
int number_edges;
//citim numarul de noduri si numarul de muchii
f >> m_number_of_nodes >> number_edges;
//rezervam in matricea de vecini spatiu pentru numarul de noduri ale grafului
this->m_adjancency_list.assign(this->m_number_of_nodes + 1, aux);
//citim fiecare muchie si o adaugam in lista de adiacenta, prin adagarea vecinului nodului din care porneste muchia
for(int i = 0; i < number_edges; i++){
int x,y;
f>>x>>y;
this->m_adjancency_list[x].push_back(y);
}
}
//citirea grafului orientat (fara costuri) cu node de pornire
int Oriented_graph::read_graph_with_starting_node(char *file) {
ifstream f(file);
vector<int> aux;
int number_edges, source;
//citim numarul de noduri, numarul de muchii si nodul de pornire
f >> this->m_number_of_nodes >> number_edges >> source;
//reyervam spatiu in matricea de vecini pentru numarul de noduri ale grafului
this->m_adjancency_list.assign(this->m_number_of_nodes + 1, aux);
//parcurgem fiecare muchie si o adaugam in lista de adiacenta, prin adaugarea vecinului la nodul din care porneste muchia
for(int i=0; i<number_edges; i++){
int x,y;
f >> x >> y;
this->m_adjancency_list[x].push_back(y);
}
return source;
}
//BFS -> returneaza un vector in care pe pozitia i se afla numarul minim de arce ce trebuie parcurse de la sursa data pana la nodul i
vector<int> Oriented_graph::BFS(int source) {
//initializam vectorul de distances minime
vector<int> distances;
distances.assign(this->m_number_of_nodes + 1, 0);
int curent;
//in coada vom pune nodurile pe massura ce le parcurgem
queue<int> current_nodes;
//initial toate nodurile sunt nevizitate, asaa ca initializam visited[orice node] = 0
vector<int> visited;
visited.assign(this->m_number_of_nodes + 1, 0);
//adaugam nodul sursa in coada si il marcam ca si vizitat
current_nodes.push(source);
visited[source] = 1;
//actualizam vectorul de distances pentru nodul curent cu distanta pana la el, adica 1
distances[source] = distances[source] + 1;
//facem BFS-ul
while( !current_nodes.empty() ){
curent = current_nodes.front();
//parcurgem vecinii nodului curent si pe fiecare vecin nevizitat il adaugam in coada, ii actualizam distanta pana la el si il marcam ca si vizitat
for(int i=0; i < this->m_adjancency_list[curent].size(); i++){
if(visited[ this->m_adjancency_list[curent][i] ] == 0){
current_nodes.push(this->m_adjancency_list[curent][i] );
distances[ current_nodes.back() ] = distances[curent] + 1;
visited[ this->m_adjancency_list[curent][i] ] = 1;
}
}
//am terminat cu nodul curent, il scoatem din coada
current_nodes.pop();
}
for(int i = 1; i <= this->m_number_of_nodes; i++){
distances[i]--;
}
return distances;
}
//metoda create_strongly_connected_components() returneaza un vector in care pe fiecare pozitie se afla o componenta tare conexa
vector< vector<int> >Oriented_graph::create_strongly_connected_components() {
vector<vector<int>> strongly_connected_components;
stack<int> current_component;
int current_arrival_time = 0;
vector<int> is_in_stack;
is_in_stack.assign(this->m_number_of_nodes + 1, 0);
vector<int> arrival_values;
arrival_values.assign(this->m_number_of_nodes + 1, -1);
vector<int> low_link_values;
low_link_values.resize(this->m_number_of_nodes + 1);
for(int i=1; i<=this->m_number_of_nodes; i++){
if(arrival_values[i] == -1){
tarjan(i, current_component, is_in_stack, arrival_values, current_arrival_time, low_link_values, strongly_connected_components);
}
}
return strongly_connected_components;
}
//tarjan
void Oriented_graph::tarjan(int node, stack<int> ¤t_component_stack, vector<int> &is_in_stack,
vector<int> &arrival_values, int ¤t_arrival_value, vector<int> &low_link_values,
vector<vector<int>> &strongly_connected_components) {
//adaugam nodul in componenta tare conexa curenta, adica in current_component_stack
current_component_stack.push(node);
//marcam nodul ca facand parte din componenta tare conexa curenta prin vectorul is_in_stack
is_in_stack[node] = 1;
//marcam nodul ca vizitat, atribuindu-i chiar timpul de ajungere
arrival_values[node] = current_arrival_value;
//valoarea low Link momentan este tot nivelul nodului curent
low_link_values[node] = current_arrival_value;
//marim timpul de ajungere pentru urmatorul step
current_arrival_value++;
//parcurgem vecinii nodului curent, facand un DFS
for(int i=0; i<this->m_adjancency_list[node].size(); i++){
int neighbor = this->m_adjancency_list[node][i];
//verificam daca vecinul curent nu a fost inca vizitat
if(arrival_values[neighbor] == -1){
//aplicam tarjan pe nodul curent
tarjan(neighbor, current_component_stack, is_in_stack, arrival_values, current_arrival_value, low_link_values, strongly_connected_components);
//la iesire incercam sa minimizam valoarea low link a nodului curent, daca vecinul la care suntem a facut in timpul tarjan-ului una mai mica
if(low_link_values[neighbor] < low_link_values[node]){
low_link_values[node] = low_link_values[neighbor];
}
}else{ //daca vecinul a fost deja vizitat
//verificam daca vizitarea s-a produs in cadrul componentei tare conexe curente
if(is_in_stack[neighbor] == 1){
//incercam sa minimizam valoarea low link a nodului curent, in cazul in care vecinul curent ajunge la un node mai indepartat decat valoarea noastra curenta
if(low_link_values[neighbor] < low_link_values[node]){
low_link_values[node] = low_link_values[neighbor];
}
}
}
}
//verificam daca nodul curent inchide o componenta tare conexa
if(arrival_values[node] == low_link_values[node]){
//trebuie sa mutam componenta tare conexa curenta din stiva in vectorul cu toate componentele tare conexe din graf
vector<int> aux;
int aux_node;
do{
aux_node = current_component_stack.top();
aux.push_back(aux_node);
current_component_stack.pop();
is_in_stack[aux_node] = 0;
}while(aux_node != node);
strongly_connected_components.push_back(aux);
}
}
//sortarea topologica -> returneaza o stiva in care sunt asezate nodurile in ordinea dara de sortarea topologica
stack<int> Oriented_graph::topological_sort() {
vector<int> visited;
stack<int> sort;
visited.assign(m_number_of_nodes + 1, 0);
for(int i = 1; i <= this->m_number_of_nodes; i++){
if(visited[i] == 0){
DFS_topological_sort(i, sort, visited);
}
}
return sort;
}
//METODE PRIVATE ORIENTED GRAPHS
//DFS-ul folosit in sortarea topologica
void Oriented_graph::DFS_topological_sort(int node, stack<int> &sort, vector<int>& visited) {
visited[node] = 1;
for(int i = 0; i < this->m_adjancency_list[node].size(); i++){
int neighbor = this->m_adjancency_list[node][i];
if(visited[neighbor] == 0){
DFS_topological_sort(neighbor, sort, visited);
}
}
sort.push(node);
}
//CLASA UNORIENTED GRAPH WITH COSTS
class Unoriented_graph_with_costs:Graph{
private:
vector< vector< pair <int,int> > > m_adjancency_list;
public:
//CONSTRUCTORI
//constructor cu 2 parametri: numarul de noduri si listele de adiacenta
Unoriented_graph_with_costs(int number_of_nodes, const vector<vector<pair<int, int>>> &adjacency_list);
//constructor fara parametri
Unoriented_graph_with_costs();
//ALGORITMI
//citirea grafului sub forma listei de vecini
void read_graph(char *file);
//algoritmul lui prim->returneaza arborele partial de cost minim si, prin parametrul dat ca referinta, returneaza si costul
vector< pair<int,int> > prim(int source, int& cost_APM);
private:
//introducerea unui node in APM
void introduce_in_APM(int node, vector<int>& distances, vector<int>& neighbors);
//introducerea unui node in heap-ul de minim
void introduce_in_min_heap(int node, vector<int>& heap, vector<int>& positions, vector<int> distances);
//urcarea in heap-ul de minim
void pop(int index, vector<int>& heap, vector<int>& poz, vector<int>& distances);
//extragerea unui node din heap-ul de minim
int extract_root_min_heap(vector<int>& heap,vector<int>& poz, vector<int> distances);
//coborarea in heap-ul de minim
void push(int index, vector<int>& heap, vector<int>& poz, vector<int>& distances);
};
//METODE PUBLICE UNORIENTED GRAPHS WITH COSTS
//CONSTRUCTORI
//constructor cu 2 parametri: numarul de noduri si listele de adiacenta
Unoriented_graph_with_costs::Unoriented_graph_with_costs(int number_of_nodes,
const vector<vector<pair<int, int>>> &adjacency_list) : Graph(number_of_nodes),
m_adjancency_list(adjacency_list) {}
//constructor fara parametri
Unoriented_graph_with_costs::Unoriented_graph_with_costs() {
m_number_of_nodes = 0;
m_adjancency_list.resize(0);
}
//ALGORIMTI
//citirea grafului
void Unoriented_graph_with_costs::read_graph(char *file) {
fstream f(file);
vector< pair <int, int> > aux;
int number_of_edges;
//citim numarul de noduri
f>>this->m_number_of_nodes;
//initializam matricea de vecini pentru numarul de noduri dat
this->m_adjancency_list.assign(this->m_number_of_nodes + 1, aux);
//citim numarul de muchii si apoi fiecare muchie, si pentru fiecare node ii adaugam vecinul in vectorul de vecini corespunzator in matricea de vecini
f >> number_of_edges;
for(int i = 0; i < number_of_edges; i++){
int x,y,cost;
f >> x >> y >> cost;
m_adjancency_list[x].push_back(make_pair(y, cost));
m_adjancency_list[y].push_back(make_pair(x, cost));
}
}
//algoritmul lui Prim -> returneaza un vector APM si, prin parametrul dat ca referinta, costul total al APM-ului
vector< pair<int,int> >Unoriented_graph_with_costs::prim(int source, int &cost_APM) {
vector<pair<int,int>> APM_edges;
vector<int> vec;
vector<int> positions;
vector<int> distances;
vector<int> heap;
//initializam vectorul de distante cu infinit pentru fiecare node, vectorul de vecini ai fiecarui node cu 0, vectorul de pozitii al fiecarui node in heap cu 0
// si heap-ul in care vom pune nodurile
distances.assign(this->m_number_of_nodes + 1, 200000200);
vec.assign(this->m_number_of_nodes + 1, 0);
positions.assign(this->m_number_of_nodes + 1, 0);
heap.push_back(0);
//pornim de la primul node: initial distanta pana la primul node este 0; introducem nodul in APM;
distances[source] = 0;
introduce_in_APM(1, distances, vec);
//luam toate nodurile si le introducem in heap-ul de minim; practic, radacina heap-ului va fi
for(int i = 2; i <= this->m_number_of_nodes; i++){
introduce_in_min_heap(i, heap, positions, distances);
}
for(int i = 1; i < this->m_number_of_nodes; i++){
//extragem nodul cu distanta minima <=> extragem radacina heap-ului
int root;
root = extract_root_min_heap(heap, positions, distances);
//introducem nodul cu distanta minima in APM
introduce_in_APM(root, distances, vec);
//actualizam costul APM-ului
cost_APM = cost_APM + distances[root];
//introducem muchia noua de la radacina la vecin in APM-ul nostru
APM_edges.push_back(make_pair(root, vec[root]));
//parcurgem vecinii radacinii si eliminam vecinii care sunt deja in heap
for(int j = 0; j < this->m_adjancency_list[root].size(); j++){
int nod;
nod = this->m_adjancency_list[root][j].first;
if(positions[nod]) pop(positions[nod], heap, positions, distances);
}
}
return APM_edges;
}
//METODE PRIVATE UNORIENTED GRAPH WITH COSTS
//introducerea unui nod in APM
void Unoriented_graph_with_costs::introduce_in_APM(int node, vector<int>& distances, vector<int>& neighbors) {
//parcurgem vecinii nodului dat; pentru fiecare vecin, incercam sa minimizam distanta;
for(int i = 0; i < this->m_adjancency_list[node].size(); i++){
int neighbor, cost;
neighbor = this->m_adjancency_list[node][i].first;
cost = this->m_adjancency_list[node][i].second;
//incercam sa minimizam distanta catre vecinul curent: in cazul in care distanta pana la vecin stiuata pana in acest moment este mai mare decat
// distanta pe care o obtinem mergand prin muchia de la nodul nostru la vecin, atunci actualizam distanta pana la vecin cu costul muchiei
//de la nodul nostru la vecin; in cazul in care s-a intamplat acest lucru, inseamna ca noul precedent al vecinului curent este nodul nostru
//asa ca, marcam acest lucru in vectorul neighbors
distances[neighbor] = min(distances[neighbor], cost);
if(distances[neighbor] == cost) neighbors[neighbor] = node;
}
}
//introducerea unui nod in heap
void Unoriented_graph_with_costs::introduce_in_min_heap(int node, vector<int>& heap, vector<int>& poz, vector<int> distances) {
//adaugam nodul la sfarsitul heap-ului
heap.push_back(node);
poz[node] = heap.size() - 1;
//urcam nodul in heap acolo unde ii este pozitia de drept
pop(heap.size() - 1, heap, poz, distances);
}
//urcarea nodului in heap acolo unde ii este pozitia corecta cand facem inserarea nodului in heap
void Unoriented_graph_with_costs::pop(int index, vector<int>& heap, vector<int>& position_in_heap, vector<int>& distances) {
//cat timp n-am ajuns la radacina heap-ului si inca nodul mai poate urca, adica distanta fata de el e mai mica decat distanta fata de tatal lui,urcam in heap
while(index > 1 && distances[ heap[index] ] < distances[ heap[index / 2] ]){
//urcarea presupune ca interschimbam in heap nodul cu tatal si pozitiile nodului si a tatalui in vectorul pozitii
swap(heap[index], heap[index / 2]);
swap(position_in_heap[ heap[index] ], position_in_heap[ heap[index / 2] ]);
index = index / 2;
}
}
//extragerea radacinii heap-ului
int Unoriented_graph_with_costs::extract_root_min_heap(vector<int>& heap,vector<int>& poz, vector<int> distances) {
int root;
//luam radacina si o punem la finalul heap-ului
root = heap[1];
swap(heap[1],heap[ heap.size() - 1 ]);
swap(poz[ heap[1] ], poz[ heap[ heap.size() - 1 ] ]);
//eliminam radacina din heap
heap.pop_back();
//reparam heap-ul
push(1, heap, poz, distances);
//actualizam vectorul de pozitii cu 0 in pozitia radacinii, deoarece nodul nu mai exista in heap
poz[root] = 0;
return root;
}
//repararea heap-ului cand extragem radacina
void Unoriented_graph_with_costs::push(int index, vector<int>& heap, vector<int>& poz, vector<int>& distances) {
//cat timp nu am ajuns la finalul heap-ului pe ramura din stanga / dreapta si cat timp nodul mai poate coborî, adică distanţa fata de nodul curent e mai mare
//decat distanta fata de fiul din stanga/dreapta
while((index * 2 <= heap.size() - 1 && distances[ heap[index] ] > distances[ heap[index * 2] ]) ||
(index * 2 + 1 <= heap.size() - 1 && distances[ heap[index] ] > distances[ heap[index * 2 + 1] ])){
//comparam cei 2 fii si mergem pe cel spre care distanta e mai mica si interschimbam nodul cu fiul corespunzator
if(distances[heap[index * 2]] < distances[heap[index * 2 + 1]] || index * 2 + 1 > heap.size() - 1){
swap(heap[index], heap[index * 2]);
swap(poz[heap[index]], poz[heap[index * 2]]);
index = index * 2;
}else{
swap(heap[index], heap[index * 2 + 1]);
swap(poz[heap[index]], poz[heap[index * 2 + 1]]);
index = index * 2 + 1;
}
}
}
//CLASA ORIENTED GRAPH WITH COSTS
class Oriented_graph_with_costs:Graph{
private:
//listele de adiacenta in forma de perechi de (vecin, cost)
vector< vector< pair<int,int> > > m_adjacency_list;
//listele de adiacenta doar cu vecinii
vector< vector<int> > m_neighbors;
//matricea de costuri
vector< vector<int> > m_costs_matrix;
public:
//CONSTRUCTORI
//constructor cu 2 parametri: numarul de noduri si matricea de adiacenta in format de perechi (vecin, cost)
Oriented_graph_with_costs(int number_of_nodes, const vector<vector<pair<int, int>>> &adjacency_list);
//constructor cu 3 parametri: numarul de noduri, listele de vecini si matricea de costuri
Oriented_graph_with_costs(int number_of_nodes, const vector<vector<int>> &adjacency_list, const vector<vector<int>> &costs_matrix);
//constructor fara parametri
Oriented_graph_with_costs();
//ALGORITMI
//citirea grafului
void read_graph(char *file);
//citirea grafului cu matricea de costuri
void read_graph_with_costs_matrix(char *file);
//citirea matricei de costuri a grafului
void read_costs_matrix(char *file);
//getter pentru matricea de costuri
vector< vector<int> > get_costs_matrix();
//metoda dijkstra -> returneaza un vector in care pe fiecare pozitie i este distanta minima de la nodul dat ca argument la nodul i
vector<int> dijkstra(int source);
//metoda bellman-ford -> primeste matricea de costuri si returneaza matricea de drumuri
vector< vector<int> > bellman_ford(vector< vector<int> > costs_matrix);
//metoda bellman-ford fara argument -> returneaza matricea drumurilor pentru graful nostru
vector< vector<int> > bellman_ford();
//metoda hamilton -> returneaza costul ciclului hamiltonian de cost minim; daca graful nu este hamiltonian, returneaza -1
int hamilton();
};
//METODE PUBLICE GRAFURI ORIENTATE CU COSTURI
//CONSTRUCTORI
//constructor cu 2 parametri: numarul de noduri si listele de adiacenta in forma de perechi (vecin, cost)
Oriented_graph_with_costs::Oriented_graph_with_costs(int number_of_nodes, const vector<vector<pair<int, int>>> &adjacency_list) : Graph(number_of_nodes),
m_adjacency_list(adjacency_list) {}
//constructor cu 3 parametri: numarul de noduri, listele de vecini si matricea de costuri
Oriented_graph_with_costs::Oriented_graph_with_costs(int number_of_nodes, const vector<vector<int>> &adjacency_list, const vector<vector<int>> &costs_matrix) :
Graph(number_of_nodes), m_neighbors(adjacency_list), m_costs_matrix(costs_matrix) {}
//constructor fara parametri
Oriented_graph_with_costs::Oriented_graph_with_costs() {
m_number_of_nodes = 0;
}
//ALGORITMI
//citirea grafuluica ca liste de adiacenta sub forma (vecin, cost)
void Oriented_graph_with_costs::read_graph(char *file) {
fstream f(file);
vector< pair<int,int> > aux;
int number_of_edges;
//citim numarul de noduri si initializam lista de vecini cu numarul de noduri
f>>m_number_of_nodes;
m_adjacency_list.assign(m_number_of_nodes + 1, aux);
//citim numarul de muchii si apoi fiecare muchie, adaugand vecinul fiecarui node in vectorul lui de vecini din matricea de vecini
f >> number_of_edges;
for(int i = 0; i < number_of_edges; i++){
int x,y,cost;
f >> x >> y >> cost;
this->m_adjacency_list[x].push_back(make_pair(y,cost));
}
}
//citirea matricii de costuri a unui graf
void Oriented_graph_with_costs::read_costs_matrix(char *file) {
ifstream f(file);
vector<int> aux;
//citim numarul de noduri si initializam matricea de costuri cu numarul de noduri dat
f >> this->m_number_of_nodes;
m_costs_matrix.push_back(aux);
//formam matricea de costuri
for(int i = 1; i <= this->m_number_of_nodes; i++){
//citim linia corespunzatoare nodului curent i in matricea de costuri
vector<int> linie;
//punem pe pozitia 0 valoarea 0 pentru ca noi lucram cu matricea de costuri incepand de pe pozitia 1
linie.push_back(0);
//citim fiecare valoare care este costul de a ajunge de la nodul i la nodul j si o punem pe pozitia linie[j]
for(int j = 1; j <= this->m_number_of_nodes; j++){
int val;
f >> val;
linie.push_back(val);
}
//adaugam linia nodului i in matrice
m_costs_matrix.push_back(linie);
}
}
//citirea grafului ca matrici separate de vecini si de costuri
void Oriented_graph_with_costs::read_graph_with_costs_matrix(char *file) {
ifstream f(file);
vector<int> aux;
int number_of_edges;
//citim numarul de noduri si numarul de muchii
f >> m_number_of_nodes >> number_of_edges;
//initializam matricea de costuri si matricea de adiacenta
m_neighbors.assign(m_number_of_nodes + 1, aux);
aux.assign(m_number_of_nodes + 1, 100000000);
m_costs_matrix.assign(m_number_of_nodes + 1, aux);
//citim fiecare muchie si costul acesteia si o introducem in graf
for(int i = 0; i < number_of_edges; i++){
int x, y, c;
f >> x >> y >> c;
m_neighbors[y].push_back(x);
m_costs_matrix[x][y] = c;
}
}
//getter pentru matricea de costuri
vector< vector<int> > Oriented_graph_with_costs::get_costs_matrix() {
return this->m_costs_matrix;
}
//dijkstra -> returneaza vectorul cu drumuri minime pentru fiecare pozitie i de la nodul sursa dat la nodul i
vector<int> Oriented_graph_with_costs::dijkstra(int source) {
vector<int> paths;
//initializam vectorul de distante minime cu infinit pe fiecare pozitie corepsunzatoare fiecarui node
paths.assign(this->m_number_of_nodes + 1, 200000200);
//pornim de la nodul dat ca argument: paths[nodul surs] = 0: distanta de la nodul sursa la el insusi este 0
paths[source] = 0;
//tree este un arbore care retine perechi de forma (cost de a ajunge de la nodul sursa la nodul i, nodul i);
// introducem in arbore prima pereche: distanta de la nodul sursa la acesta(adica 0) si nodul sursa
set<pair<int,int>> tree;
tree.insert(make_pair(0, source));
//cat timp arborele nu e gol
while(!tree.empty()){
//extragem din arbore nodul si costul de la radacina
int nod,cost;
nod = tree.begin()->second;
cost = tree.begin()->first;
tree.erase(tree.begin());
//parcurgem vecinii nodului de la radacina arborelui si incercam minimizarea distantelor
for(int i = 0; i < this->m_adjacency_list[nod].size(); i++){
int neighbor, cost_neighbor;
neighbor = this->m_adjacency_list[nod][i].first;
cost_neighbor = this->m_adjacency_list[nod][i].second;
//daca distanta de la nodul sursa pana la vecin pe care o aveam pana la acest moment este mai mare decat
//distanta pe care am obtine-o prin nodul curent cu drumul pana la acesta + costul muchiei de la acesta la vecin
//atunci minimizam distanta catre vecin; in cazul in care este primul drum pe care il gasim catre vecin, scoatem din arbore perechea corespunzatoare vecinului
if(paths[neighbor] > paths[nod] + cost_neighbor){
if(paths[neighbor] != 200000200){
tree.erase(tree.find(make_pair(paths[neighbor], neighbor)));
}
paths[neighbor] = paths[nod] + cost_neighbor;
//adaugam in arbore perechea data de vecin si costul drumului pana la acesta
tree.insert(make_pair(paths[neighbor], neighbor));
}
}
}
//pentru nodurile pentru care distanta de la nodul sursa la ele a ramas infinit, inseamna ca nu exista drum de la nodul sursa la acetea;
//asadar, trebuie sa modificam in vectorul cu distante minim aceste valori cu 0;
for(int i = 1; i <= this->m_number_of_nodes; i++){
if(paths[i] == 200000200) paths[i] = 0;
}
return paths;
}
//bellman-ford fara argument -> returneaza matricea de drumuri a grafului
vector< vector<int> > Oriented_graph_with_costs::bellman_ford() {
//daca graful nu are setata matricea de costuri, o setam
if(m_costs_matrix.empty()){
vector<int> aux;
aux.assign(m_number_of_nodes + 1, 0);
m_costs_matrix.assign(m_number_of_nodes + 1, aux);
for(int i = 0; i < m_adjacency_list.size(); i++){
for(int j = 0; j < m_adjacency_list[i].size(); j++){
m_costs_matrix[i][j] = m_adjacency_list[i][j].second;
}
}
}
return this->bellman_ford(m_costs_matrix);
}
//bellman ford cu argument -> ia matricea de costuri data si returneaza matricea de drumuri asociata
vector< vector<int> > Oriented_graph_with_costs::bellman_ford(vector<vector<int>> costs_matrix) {
vector<vector<int>> path_matrix;
vector<int> aux;
//initializam matricea de drumuri cu numarul de noduri ale grafului nostru
aux.assign(this->m_number_of_nodes + 1, 0);
path_matrix.assign(this->m_number_of_nodes + 1, aux);
//initial, pe fiecare pozitie (i, j) in matricea de drumuri se afla costul de a ajunge de la i la j prin muchia directa;
for(int i = 1; i <= this->m_number_of_nodes; i++){
for(int j = 1; j <= this->m_number_of_nodes; j++){
path_matrix[i][j] = this->m_costs_matrix[i][j];
}
}
for(int k = 1; k <= this->m_number_of_nodes; k++){
for(int i = 1; i <= this->m_number_of_nodes; i++){
for(int j = 1; j <= this->m_number_of_nodes; j++){
if(i != j && path_matrix[i][k] != 0 && path_matrix[k][j] != 0){
if(path_matrix[i][j] > path_matrix[i][k] + path_matrix[k][j]){
path_matrix[i][j] = path_matrix[i][k] + path_matrix[k][j];
}else if (path_matrix[i][j] == 0){
path_matrix[i][j] = path_matrix[i][k] + path_matrix[k][j];
}
}
}
}
}
return path_matrix;
}
//hamilton() -> returneaza costul ciclului hamiltonian minim
int Oriented_graph_with_costs::hamilton() {
vector< vector<int> > minimum_costs;
vector<int> aux;
//initializam matricea cu costuri minime ale drumurilor de la un nod la altul -> avem atatea linii
// cate variante de drumuri putem avea, adica atatea linii cate numere in baza 2 cu nr_noduri cifre putem scrie.
// avem atatea coloane cate noduri sunt
aux.assign(m_number_of_nodes + 1, 100000000);
minimum_costs.assign(1 << m_number_of_nodes, aux);
//initializam lantul format dintr-un singur nod cu cost 0
minimum_costs[1][0] = 0;
//formam matricea costurilor minime posibile ale tuturor drumurilor posibile - parcurgem toate drumurile posibile si,
//pentru fiecare nod, verificam daca acel nod se afla in drumul curent sau nu, caz in care trebuie sa actualizam costul minim al lantului
//care ajunge in acel nod
for(int i = 0; i < 1 << m_number_of_nodes; i++){
for(int j = 0; j < m_number_of_nodes; j++){
//pentru fiecare drum, parcurgem toate nodurile grafului si, pentru nodurile care fac parte din drum, incercam sa actualizam costurile minime ale drumurilor pana la j prin i
//i este drumul; j este nodu; daca j face parte din i, atunci bitul de pe pozitia j din i este 1
if( i & (1 << j) ){
//daca nodul j face parte din drumul curent i, parcurgem vecinii nodului j si, daca vecinul face parte si el din drum, atunci incercam sa actualizam costul minim al drumului
//pana la nodul j prin drumul i
for(int k = 0; k < m_neighbors[j].size(); k++){
if( i & (1 << m_neighbors[j][k]) ){
//daca vecinul nodului apartine drumului, verificam daca e cazul sa actualizam minimul costurilor drumurilor pana la nodul j prin drumul i
//cu suma dintre costul minim pana la vecin + costul muchiei de la vecin la j
minimum_costs[i][j] = min( minimum_costs[i][j], minimum_costs[i ^ (1 << j) ][ m_neighbors[j][k] ] + m_costs_matrix[ m_neighbors[j][k] ][j]);
}
}
}
}
}
//aflam costul minim al unnui ciclu
int mini = 100000000;
for(int i = 0; i < m_neighbors[0].size(); i++){
mini = min(mini, minimum_costs[ (1 << m_number_of_nodes) - 1 ][ m_neighbors[0][i] ] + m_costs_matrix[ m_neighbors[0][i] ][0]);
}
//daca mini a ramas infinit, inseamna ca graful nu este hamiltonian
if(mini == 100000000) return -1;
return mini;
}
//CLASA ARBORE
class Tree:Graph{
private:
vector< vector<int> > m_adjacency_list;
vector<int> m_fathers_array;
vector<int> m_ranks_array;
public:
//CONSTRUCTORI
//constructor cu 1 parametru: numarul de noduri
Tree(int number_of_nodes);
//constructor cu 2 parametri: numarul de noduri si listele de adiacenta
Tree(int number_of_nodes, const vector<vector<int>> &adjacency_list);
//constructor fara parametri
Tree();
//citirea arborelui
void read_graph(char *file);
//BFS pentru diametrul arborelui
void BFS(int node, int& diameter, int& last);
//initializarea vectorului de tati
void initialize_fathers_array();
//initializarea vectorului de ranguri
void initialize_ranks_array(int value);
//setarea numarului de noduri
void set_number_of_nodes(int number_of_nodes);
//gasirea unui nod intr-un arbore -> returneaza numarul multimii in care se afla (identificat prin nodul radacina al arborelui ce reprezinta multimea)
int find(int node);
//reuninea a 2 multimi in arbore -> primeste ca argument numerele multimilor ce trebuie reunite (adica nodurile radacina ale celor 2 arbori ce reprezinta multimile)
void unify(int set1, int set2);
};
//METODE PUBLICE ARBORE
//CONSTRUCTORI
//constructor cu 1 parametru: numarul de noduri
Tree::Tree(int number_of_nodes){
m_number_of_nodes = number_of_nodes;
vector<int> aux;
aux.assign(m_number_of_nodes + 1, 0);
m_adjacency_list.assign(m_number_of_nodes + 1, aux);
m_fathers_array.push_back(0);
for(int i = 1; i <= m_number_of_nodes; i++){
m_fathers_array.push_back(i);
}
m_ranks_array.assign(m_number_of_nodes + 1, 1);
}
//constructor cu 2 parametri: numarul de noduri si listele de adiacenta
Tree::Tree(int number_of_nodes, const vector<vector<int>> &adjacency_list) : Graph(number_of_nodes), m_adjacency_list(adjacency_list) {}
//constructor fara parametri
Tree::Tree() {
m_number_of_nodes = 0;
m_adjacency_list.resize(m_number_of_nodes);
}
//ALGORITMI
//citirea arborelui
void Tree::read_graph(char *file) {
ifstream f(file);
vector<int> aux;
//citim numarul de noduri si initializam lista de vecini cu cu numarul de noduri dat
f >> this->m_number_of_nodes;
this->m_adjacency_list.assign(this->m_number_of_nodes + 1, aux);
//citim muchiile arborelui si marcam pentru fiecare node vecinul sau in matricea de vecini
for(int i = 0; i < this->m_number_of_nodes; i++){
int x, y;
f >> x >> y;
this->m_adjacency_list[x].push_back(y);
this->m_adjacency_list[y].push_back(x);
}
}
//parcurgerea cu BFS pentru diametru
void Tree::BFS(int node, int &diameter, int &last) {
//initializam vectorul de distances minime
vector<int> distances;
distances.assign(this->m_number_of_nodes + 1, 0);
int current_node;
//in nodes_queue vom pune nodurile pe massura ce le parcurgem
queue<int> nodes_queue;
//initial toate nodurile sunt nevizitate, asaa ca initializam visited[orice node] = 0
vector<int> visited;
visited.assign(this->m_number_of_nodes + 1, 0);
//adaugam nodul sursa in nodes_queue si il marcam ca si vizitat
nodes_queue.push(node);
visited[node] = 1;
//actualizam vectorul de distances pentru nodul current_node cu distanta pana la el, adica 1
distances[node] = distances[node] + 1;
//facem BFS-ul
while(!nodes_queue.empty()){
current_node = nodes_queue.front();
//parcurgem vecinii nodului current_node si pe fiecare vecin nevizitat il adaugam in nodes_queue, ii actualizam distanta pana la el si il marcam ca si vizitat
for(int i=0; i < this->m_adjacency_list[current_node].size(); i++){
if(visited[this->m_adjacency_list[current_node][i]] == 0){
nodes_queue.push(this->m_adjacency_list[current_node][i]);
distances[nodes_queue.back()] = distances[current_node] + 1;
visited[this->m_adjacency_list[current_node][i]] = 1;
diameter = distances[this->m_adjacency_list[current_node][i]];
last = this->m_adjacency_list[current_node][i];
}
}
//am terminat cu nodul current_node, il scoatem din nodes_queue
nodes_queue.pop();
}
}
void Tree::initialize_fathers_array() {
if(m_fathers_array.size() <= m_number_of_nodes) m_fathers_array.resize(m_number_of_nodes + 1);
for(int i = 1; i <= m_number_of_nodes; i++){
m_fathers_array[i] = i;
}
}
void Tree::initialize_ranks_array(int value) {
m_ranks_array.assign(m_number_of_nodes + 1, value);
}
void Tree::set_number_of_nodes(int number_of_nodes) {
m_number_of_nodes = number_of_nodes;
m_fathers_array.resize(m_number_of_nodes + 1);
m_ranks_array.resize(m_number_of_nodes + 1);
}
int Tree::find(int node) {
int root;
//gasesc radacina arborelui din care face parte nodul dat <=> pornesc din nodul dat si urc in arbore pana gasesc nodul care pointeaza catre el insusi
root = node;
while(m_fathers_array[root] != root){
root = m_fathers_array[root];
}
//facem compresia durmurilor, pentru a scadea timpul de executie
//acum ca stim unde se afla nodul x, urcam din tata in tata pana la radacina si il legam pe fiecare nod prin care trecem de radacina
//astfel, cand vom avea urmatoarea interogare, avem nodul cautat direct legat de radacina, asa ca vom putea raspunde in O(1)
do{
int aux;
aux = m_fathers_array[node];
m_fathers_array[node] = root;
node = aux;
}while(m_fathers_array[node] != node);
return root;
}
void Tree::unify(int set1, int set2) {
//multimea cu rang mai mic va deveni surbaroe al celei cu rang mai mare <=> tatal radacinii multimii cu rangul mai mic devine radacina celei cu rangul mai mare
if(m_ranks_array[set1] > m_ranks_array[set2]) m_fathers_array[set2] = set1;
else m_fathers_array[set1] = set2;
//daca ambele multimi au acelasi rang, inseamna ca multime-mama a devenit a doua, deci ii cresc rangul
if(m_ranks_array[set1] == m_ranks_array[set2]) m_ranks_array[set2]++;
}
//CLASA RETELE DE TRANSPORT
class Flow_network:Oriented_graph{
private:
vector< vector<int> > m_capacities_matrix;
public:
//CONSTRUCTORI
//constructor cu 3 parametri: numarul de noduri, listele de adiacenta si matricea de capacitati
Flow_network(int number_of_nodes, const vector<vector<int>> &adjancency_list,
const vector<vector<int>> &capacities_matrix);
//constructor fara parametri
Flow_network();
//ALGORITMI
//citirea fluxului de transport
void read_graph(char *file);
//metoda edmonds_karp -> returneaza fluxul maxim care poate fi transportat
int edmonds_karp();
private:
//BFS-ul folosit in aflarea fluxului maxim
int BFS(vector<int>& father, vector< vector<int> >& f, vector<int>& visited);
};
//METODE PUBLICE RETEA DE TRANSPORT
//CONSTRUCTORI
//constructor cu 3 parametri: numarul de noduri, listele de adiacenta si matricea de capacitati
Flow_network::Flow_network(int number_of_nodes, const vector<vector<int>> &adjancency_list, const vector<vector<int>> &capacities_matrix) :
Oriented_graph(number_of_nodes, adjancency_list), m_capacities_matrix(capacities_matrix) {}
//constructor fara parametri
Flow_network::Flow_network() {
m_number_of_nodes = 0;
m_capacities_matrix.resize(0);
m_adjancency_list.resize(0);
}
//ALGORITMI
//citirea retelei de transporturi
void Flow_network::read_graph(char *file) {
ifstream f(file);
vector<int> aux;
int number_of_edges;
//citim numarul de noduri si numarul de muchii si initializam lista de vecini si matricea de capacitati
f >> m_number_of_nodes >> number_of_edges;
m_adjancency_list.assign(m_number_of_nodes + 1, aux);
aux.assign(m_number_of_nodes + 1, 0);
m_capacities_matrix.assign(m_number_of_nodes + 1, aux);
//parcurgem muchiile si, la fiecare, adaugam vecinii fiecarui nod in listele de vecini si actualizam capacitatea de pe pozitia corespunzatoare muchiei in matricea de capacitati
for(int i = 0; i < number_of_edges; i++){
int x, y, capacity;
f >> x >> y >> capacity;
m_capacities_matrix[x][y] = m_capacities_matrix[x][y] + capacity;
m_adjancency_list[x].push_back(y);
m_adjancency_list[y].push_back(x);
}
}
//edmonds_karp() -> returneaza fluxul maxim
int Flow_network::edmonds_karp() {
//initializam flow-ul maxim cu 0
int flow = 0;
//initializam vectorul de tati si matricea cu fluxuri
vector<int> father;
vector< vector<int> > f;
vector<int> visited;
vector<int> aux;
aux.assign(m_number_of_nodes + 1, 0);
father.assign(m_number_of_nodes + 1, 0);
f.assign(m_number_of_nodes + 1, aux);
while(BFS(father,f,visited)){
for(int i = 0; i < m_adjancency_list[m_number_of_nodes].size(); i++){
int node;
node = m_adjancency_list[m_number_of_nodes][i];
if(f[node][m_number_of_nodes] != m_capacities_matrix[node][m_number_of_nodes] && visited[node] != 0) {
father[m_number_of_nodes] = node;
int fmin = 1000000;
for (node = m_number_of_nodes; node != 1; node = father[node]) {
fmin = min(fmin, m_capacities_matrix[father[node]][node] - f[father[node]][node]);
}
if (fmin != 0) {
for (node = m_number_of_nodes; node != 1; node = father[node]) {
f[father[node]][node] = f[father[node]][node] + fmin;
f[node][father[node]] = f[node][father[node]] - fmin;
}
flow = flow + fmin;
}
}
}
}
return flow;
}
//METODE PRIVATE RETEA DE TRANSPORT
//BFS-ul folosit in edmonds_karp() in aflarea fluxului maxim
int Flow_network::BFS(vector<int>& father, vector< vector<int> >& f, vector<int>& visited) {
vector<int> cd;
//initializam vectorul cd pentru maxim 1024 de noduri
cd.assign(1024,0);
cd[0] = cd[1] = 1;
//initializam vectorul de noduri vizitate
visited.assign(m_number_of_nodes + 1, 0);
//marcam primul nod ca vizitat
visited[1] = 1;
for(int i = 1; i <= cd[0]; i++){
int node;
node = cd[i];
if(node != m_number_of_nodes) {
for (int j = 0; j < m_adjancency_list[node].size(); j++) {
int neighbor;
neighbor = m_adjancency_list[node][j];
if (m_capacities_matrix[node][neighbor] != f[node][neighbor] && visited[neighbor] == 0) {
visited[neighbor] = 1;
cd[++cd[0]] = neighbor;
father[neighbor] = node;
}
}
}
}
return visited[m_number_of_nodes];
}
//CLASA MULTIGRAF
class Multigraph:Graph{
private:
vector< vector<int> > m_nodes_edges;
vector< pair<int,int> > m_edges;
public:
//CONSTRUCTORI
//constructor cu 3 parametri: numarul de nodrui, matricea de muchii si vectorul avand pe fiecare pozitie i perechi de forma (x,y), insemnand ca muchia
//numarul i este de la x la y
Multigraph(int number_of_nodes, const vector<vector<int>> &nodes_edges, const vector<pair<int, int>> &edges);
//constructor fara parametri
Multigraph();
//ALGORITMI
//citirea multigrafului
void read_graph(char *file);
//euler(nod) -> determina un ciclu eulerian din multigraf si il returneaza, sau returneaza -1 daca graful nu are niciun ciclu eulerian
vector<int> euler(int nod);
private:
bool check_even_degrees();
};
//METODE PUBLICE MULTIGRAF
//CONSTRUCTORI
//constructor cu 3 parametri: numarul de nodrui, matricea de muchii si vectorul avand pe fiecare pozitie i perechi de forma (x,y), insemnand ca muchia
//numarul i este de la x la y
Multigraph::Multigraph(int number_of_nodes, const vector<vector<int>> &nodes_edges, const vector<pair<int, int>> &edges)
: Graph(number_of_nodes), m_nodes_edges(nodes_edges), m_edges(edges) {}
//constructor fara parametri
Multigraph::Multigraph() {
m_number_of_nodes = 0;
m_nodes_edges.resize(0);
m_edges.resize(0);
}
//ALGORITMI
//citirea multigrafului
void Multigraph::read_graph(char *file) {
ifstream f(file);
int number_of_edges;
vector<int> aux;
//citim numarul de noduri si numarul de muchii
f >> m_number_of_nodes >> number_of_edges;
//initializam matricea de muchii si vectorii cu nodurile sursa si nodurile destinatie ale muchiilor
m_nodes_edges.assign(m_number_of_nodes + 1, aux);
m_edges.resize(number_of_edges + 1);
for(int i = 0; i < number_of_edges; i++){
//citim fiecare muchie in parte
int x,y;
f >> x >> y;
//actualizam matricea de muchii: la x si la y marcam existenta muchiei i
m_nodes_edges[x].push_back(i);
m_nodes_edges[y].push_back(i);
//marcam cum exact este aceasta muchie: de la x la y, deci actualizam vectorul de noduri de sursa ( adaugand x)
// si cel de noduri destinatie (adaugand y)
m_edges[i] = make_pair(x,y);
}
}
//euler() -> returneaza un vector continand ciclul minim eulerian din graf pornind de la nodul dat sau doar valoarea -1 daca graful nu este eulerian
vector<int> Multigraph::euler(int nod) {
vector<int> euler_cycle;
//una din conditiile ca un graf sa fie eulerian este sa aiba toate nodurile cu graduri pare, asa ca testam acest lucru
if(!this->check_even_degrees()){
euler_cycle.push_back(-1);
return euler_cycle;
}
stack<int> nodes;
vector<int> visited_edges;
//initializam vectorul de muchii vizitate: initial toate sunt nevizitate
visited_edges.assign(m_edges.size(), 0);
//adaugam in stiva cu ciclul format momentan primul nod: cel dat
nodes.push(nod);
//cat timp stiva nu e goala <=> cat timp mai avem noduri in ciclul format
while(!nodes.empty()){
//preluam nodul curent din ciclul format
int current_node;
current_node = nodes.top();
//daca nodul curent are vecini, luam muchia catre un vecin aleator al nodul curent - aici ultimul, pentru a-l putea elimina usor
if(m_nodes_edges[current_node].size() != 0){
int random_edge;
random_edge = m_nodes_edges[current_node].back();
//eliminam muchia aleasa
m_nodes_edges[current_node].pop_back();
//daca muchia nu a mai fost vizitata pana acum, atunci luam muchia care pleaca din el si adaugam nodul destinatie in stiva cu ciclul format
if(visited_edges[random_edge] == 0){
//marcam muchia ca vizitata
visited_edges[random_edge] = 1;
//adaugam vecinul la care ne trimite muchia in stiva cu ciclul eulerian curent
nodes.push(m_edges[random_edge].first ^ m_edges[random_edge].second ^ current_node);
}
} else {
//daca nodul curent nu are vecini, il scoatem din stiva cu ciclul eulerian format si il adaugam in rezultat
nodes.pop();
euler_cycle.push_back(current_node);
}
}
return euler_cycle;
}
//METODE PRIVATE MULTIGRAF
//check_even_degrees -> verifica daca toate nodurile muligrafului au grad par
bool Multigraph::check_even_degrees() {
for(int i = 1; i <= m_number_of_nodes; i++){
if(m_nodes_edges[i].size() % 2 == 1){
return false;
}
}
return true;
}
//HELPERE
//AFISARI DE VECTORI
void print_vector(vector<int> v, char *file, int i = 0){
ofstream g(file);
vector<int>::iterator it;
for(it = v.begin() + 1 + i; it != v.end(); it++){
g << *it <<" ";
}
}
void print_vector_of_unordered_sets(vector< unordered_set<int> > v, char *file, int i = 0){
ofstream g(file);
vector< unordered_set<int> >::iterator it;
unordered_set<int>::iterator it_u;
g << v.size() << "\n";
for(it = v.begin() + i; it != v.end(); it++){
for(it_u = it->begin(); it_u != it->end(); it_u++){
g << *it_u << " ";
}
g << "\n";
}
}
void print_vector_of_vectors(vector< vector<int> >v, char *file, int i = 0, bool show_size = true){
ofstream g(file);
vector< vector<int> >::iterator it;
vector<int>::iterator it_u;
if(show_size == true) g << v.size() << "\n";
for(it = v.begin() + i; it != v.end(); it++){
for(it_u = it->begin() + i; it_u != it->end(); it_u++){
g << *it_u << " ";
}
g << "\n";
}
}
void print_stack(stack<int> s, char *file){
ofstream g(file);
while(!s.empty()){
g << s.top() << " ";
s.pop();
}
}
//CITIRI DE VECTORI
void read_vector(vector<int>& v, char *file){
ifstream f(file);
int size;
f >> size;
for(int i = 0; i < size; i++){
int value;
f >> value;
v.push_back(value);
}
}
//PROBLEME DE PE INFOARENA
void solve_infoarena_bfs(){
Oriented_graph g;
int source;
vector<int> distances;
source = g.read_graph_with_starting_node("../bfs.in");
distances = g.BFS(source);
print_vector(distances, "../bfs.out");
}
void solve_infoarena_dfs(){
Undirected_graph g;
ofstream out("../dfs.out");
int number;
g.read_graph("../dfs.in");
number = g.number_of_connected_components();
out << number;
}
void solve_infoarena_biconex(){
Undirected_graph g;
vector< unordered_set<int> > biconnected_components;
g.read_graph("../biconex.in");
biconnected_components = g.generate_biconnected_components();
print_vector_of_unordered_sets(biconnected_components, "../biconex.out");
}
void solve_infoarena_ctc(){
Oriented_graph g;
vector< vector<int> > strongly_connected_components;
g.read_graph("../ctc.in");
strongly_connected_components = g.create_strongly_connected_components();
print_vector_of_vectors(strongly_connected_components, "../ctc.out");
}
void solve_infoarena_sortaret(){
Oriented_graph g;
stack<int> topological_sort;
g.read_graph("../sortaret.in");
topological_sort = g.topological_sort();
print_stack(topological_sort, "../sortaret.out");
}
void solve_havel_hakimi(){
Graph g;
vector<int> v;
ofstream out("../hakimi.out");
read_vector(v,"../hakimi.in");
if(g.hakimi(v) == true) out << "Posibil";
else out << "Imposibil";
}
void solve_infoarena_apm(){
Unoriented_graph_with_costs g;
vector< pair<int,int> > apm;
ofstream out("../apm.out");
int cost_APM = 0;
g.read_graph("../apm.in");
apm = g.prim(1,cost_APM);
out << cost_APM << "\n";
out << apm.size() << "\n";
for(int i = 0; i < apm.size(); i++){
out << apm[i].first << " " << apm[i].second << "\n";
}
}
void solve_infoarena_dijkstra(){
Oriented_graph_with_costs g;
vector<int> minimum_distances;
g.read_graph("../dijkstra.in");
minimum_distances = g.dijkstra(1);
print_vector(minimum_distances, "../dijkstra.out", 1);
}
void solve_infoarena_royfloyd(){
Oriented_graph_with_costs g;
vector< vector<int> > paths;
g.read_costs_matrix("../royfloyd.in");
paths = g.bellman_ford(g.get_costs_matrix());
print_vector_of_vectors(paths,"../royfloyd.out",1,false);
}
void solve_infoarena_maxflow(){
Flow_network f;
ofstream out("../maxflow.out");
int maxflow;
f.read_graph("../maxflow.in");
maxflow = f.edmonds_karp();
out << maxflow;
}
void solve_infoarena_darb(){
ofstream out("../darb.out");
Tree t;
t.read_graph("../darb.in");
int diameter = 0, last = 0;
t.BFS(1, diameter, last);
t.BFS(last,diameter,last);
out << diameter;
}
void solve_infoarena_ciclueulerian(){
Multigraph g;
vector<int> euler_cycle;
g.read_graph("../ciclueuler.in");
euler_cycle = g.euler(1);
//dam ca argument la printarea vectorului -1 pentru ca printarea sa inceapa de pe pozitia 0
print_vector(euler_cycle, "../ciclueuler.out", -1);
}
void solve_infoarena_hamilton(){
ofstream out("../hamilton.out");
Oriented_graph_with_costs g;
int hamilton;
g.read_graph_with_costs_matrix("../hamilton.in");
hamilton = g.hamilton();
if(hamilton == -1) out << "Nu exista solutie";
else out << hamilton;
}
void solve_infoarena_cuplajmaxim(){
Undirected_graph_coupler g;
ofstream out("../cuplaj.out");
g.read_graph("../cuplaj.in");
vector< pair<int, int> > maximum_coupler;
maximum_coupler = g.hopcroft_karp();
out << maximum_coupler.size() << "\n";
for(int i = 0; i < maximum_coupler.size(); i++){
out << maximum_coupler[i].first << " " << maximum_coupler[i].second << "\n";
}
}
void solve_infoarena_paduridisjuncte(){
ifstream in("../disjoint.in");
ofstream out("../disjoint.out");
int nodes, number_of_tasks;
Tree set;
//citim numarul de multimi
in >> nodes;
//numarul de multimi <=> numarul de noduri ale arborelui (initial fiecare multime are doar elementul i), asa ca setam ca arborele cu numar de noduri = numar de multimi
set.set_number_of_nodes(nodes);
//initial, tatal fiecarui nod este chiar el (pentru ca fiecare multime i contine doar elementul i) si rangul fiecarui arbore este 1
set.initialize_fathers_array();
set.initialize_ranks_array(1);
//citim numarul de operatii
in >> number_of_tasks;
//citim fiecare operatie
for(int i = 0; i < number_of_tasks; i++){
int task, x, y;
in >> task >> x >> y;
if(task == 2){
//daca task-ul este 2, atunci trebuie sa verificam daca x si y se afla in aceeasi multime; afisam DA / NU, dupa caz
if( set.find(x) == set.find(y) ) out << "DA\n";
else out << "NU\n";
}else{
//daca task-ul este 1, atunci trebuie sa reunim multimea in care se afla elementul x cu cea in care se afla elementul y;
int index_x, index_y;
index_x = set.find(x);
index_y = set.find(y);
set.unify(index_x, index_y);
}
}
}
//PROBLEMA LEETCODE
/*
class Solution {
public:
vector<vector<int>> criticalConnections(int n, vector<vector<int>>& connections) {
Undirected_graph g;
g.set_number_of_nodes(n);
g.set_adjacency_list(connections);
vector<vector<int>> result;
result = g.find_critical_edges();
return result;
}
};
*/
//PROBLEMELE INFOARENA
int main() {
//BFS INFOARENA
//solve_infoarena_bfs();
//DFS INFOARENA
//solve_infoarena_dfs();
//COMPONENTE BICONEXE INFOARENA
//solve_infoarena_biconex();
//CTC INFOARENA
//solve_infoarena_ctc();
//SORTARE TOPOLOGICA INFOARENA
//solve_infoarena_sortaret();
//HAVEL HAKIMI
//solve_havel_hakimi();
//APM INFOARENA - ALGORITMUL LUI PRIM
solve_infoarena_apm();
//PADURI DE MULTIMI DISJUNCTE INFOARENA
//Cele 2 multimi vor fi reprezentate ca 1 arbore
//solve_infoarena_paduridisjuncte();
//DIJKSTRA INFOARENA
//solve_infoarena_dijkstra();
//BELLMAN FORD
//solve_infoarena_royfloyd();
//FLUXUL MAXIM INFOARENA
//solve_infoarena_maxflow();
//DIAMETRUL UNUI ARBORE
//solve_infoarena_darb();
//CICLUL EULERIAN INFOARENA
//solve_infoarena_ciclueulerian();
//CICLUL HAMILTONIAN DE COST MINIM INFOARENA
//solve_infoarena_hamilton();
//CUPLAJ MAXIM IN GRAF BIPARTIT INFOARENA
//solve_infoarena_cuplajmaxim();
return 0;
}