#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <unordered_set>
#include <stack>
#include <algorithm>
using namespace std;
class Graph{
private:
//DATE MEMBRE
int graph_Nodes; //numar de noduri
vector<vector<int>> graph_adjacency_list; //lista de adiacenta
vector<vector<pair<int,int>>> graph_adjacency_list_with_costs; //lista de adiacenta pentru graf cu costuri
//METODE UTILE
int read_BFS_Infoarena(char *file); //citeste un graf orientat fara costuri si nodul sursa de la care se calculeaza distantele in BFS pe infoarena
vector<int> create_Minimum_Paths(int node); //returneaza vectorul cu distante pentru problema BFS de pe infoarena
vector<int> initViz(); //marcheaza toate nodurile ca nevizitate
void print_Minimum_Paths(char *file, vector<int> distances); //afiseaza caile minime calculate in BFS infoarena
int count_Connected_Components(); //returneaza numarul componentelor conexe
vector<unordered_set<int>> create_Biconnected_Components(); //returneaza vectorul de componente biconexe
void DFSBiconnected(int nodCurent, int precedent, int pas, vector<int>& vizPasi, vector<int>& low_link_values,vector<unordered_set<int>>& biconnected_components,stack<pair <int, int>>& StivaMuchiiComponentaBiconexaCurenta); //DFS pentru aflarea numarului de componente biconexe
vector<vector<int>> Create_Strongly_Connected_Components(); //genereaza vectorul de componente tare conexe
void tarjan(int nod,stack<int>& StivaComponentaTareConexaCurenta,vector<int>& isInStiva,vector<int>& arrivalTime, int& arrivalTimeCurent, vector<int>& lowLinkValue, vector<vector<int>>& strongly_connected_components); //algoritmul tarjan pentru CTC
void DFSSortareTopologica(int nod, vector<int>& viz, stack<int>& sortare);
bool hakimi(vector<int>& values, int number_of_values);
vector<vector<int>> Find_Critical_Edges();
void DFSCriticals(int node, int& arrival_time, vector<vector<int>>& critical_edges, vector<int>& viz, vector<int>& arrival_times, vector<int>& low_link_values, vector<int>& prec);
vector<pair<int,int>> create_APM(int& cost_APM);
void introduce_in_APM(int nod, vector<int>& distante, vector<int>& vec);
void introduce_in_min_heap(int nod, vector<int>& heap, vector<int>& poz, vector<int> distante);
int extract_root_min_heap(vector<int>& heap,vector<int>& poz, vector<int> distante);
void pop(int index, vector<int>& heap, vector<int>& poz, vector<int>& distante);
void push(int index, vector<int>& heap, vector<int>& poz, vector<int>& distante);
public:
void read_Unoriented_Graph_Without_Costs(char *file); //primeste calea catre fisierul text si citeste un graf neorientat fara costuri
void read_Oriented_Graph_Without_Costs(char *file); //primeste calea catre fisierul text si citeste un graf orientat fara costuri
void read_Unoriented_Graph_With_Costs(char *file); //primeste calea catre fisierul text si citeste un graf orientat cu costuri
void show_Shortest_Paths(char *file_in, char *file_out); //primeste calea catre fisierul text cu datele si cel in care trebuie afisate rezultatele,
// si afiseaza cele mai scurte drumuri ce trebuie parcurse pentru a ajunge din nodul sursa la fiecare nod
void print_Number_Of_Connected_Components(char *file); //afiseaza numarul de componente conexe
void DFS(int node, vector<int>& visited); //parcurgerea DFS
void print_Biconnected_Components(char *file); //afiseaza componentele biconexe
void print_Strongly_Connected_Components(char *file); //afiseaza componentele tare conexe
void print_Topological_Sort(char *file); //afiseaza sortarea topologica
void generateFromSecventa(char *file_in, char *file_out);
void print_Critical_Edges(char *file); //afiseaza muchiile critice intr-un fisier dat
void print_APM(char *file); //afiseaza APM
};
//METODELE PUBLICE:
//CITIREA UNUI GRAF NEORIENTAT FARA COSTURI
void Graph::read_Unoriented_Graph_Without_Costs(char *file){
ifstream f(file);
vector<int> aux;
int nrMuchii;
f>>this->graph_Nodes;
this->graph_adjacency_list.assign(this->graph_Nodes + 1, aux);
f>>nrMuchii;
for(int i=0; i<nrMuchii; i++){
int x,y;
f>>x>>y;
this->graph_adjacency_list[x].push_back(y);
this->graph_adjacency_list[y].push_back(x);
}
}
//CITIREA UNUI GRAF ORIENTAT FARA COSTURI
void Graph::read_Oriented_Graph_Without_Costs(char *file){
ifstream f(file);
vector<int> aux;
int nrMuchii;
f>>this->graph_Nodes;
this->graph_adjacency_list.assign(this->graph_Nodes + 1, aux);
f>>nrMuchii;
for(int i = 0; i < nrMuchii; i++){
int x,y;
f>>x>>y;
this->graph_adjacency_list[x].push_back(y);
}
}
//CITIREA UNUI GRAF NEORIENTAT CU COSTURI
void Graph::read_Unoriented_Graph_With_Costs(char *file){
fstream f(file);
vector<pair<int,int>> aux;
int nrMuchii;
f>>this->graph_Nodes;
this->graph_adjacency_list_with_costs.assign(this->graph_Nodes + 1, aux);
f>>nrMuchii;
for(int i = 0; i < nrMuchii; i++){
int x,y,cost;
f >> x >> y >> cost;
this->graph_adjacency_list_with_costs[x].push_back(make_pair(y,cost));
this->graph_adjacency_list_with_costs[y].push_back(make_pair(x,cost));
}
}
//PROBLEMA BFS INFOARENA - AFISAREA DRUMURILOR DE LUNGIME MINIMA DE LA UN NOD SURSA LA FIECARE NOD DIN GRAF
void Graph::show_Shortest_Paths(char *file_in, char *file_out){
int startNode; //nodul sursa de la care se calculeaza distantele catre fiecare nod
vector<int> minPaths; //vectorul cu distantele minime
startNode = this->read_BFS_Infoarena(file_in);
minPaths = this->create_Minimum_Paths(startNode);
this->print_Minimum_Paths(file_out, minPaths);
}
//PROBLEMA DFS INFOARENA - AFISAREA NUMARULUI DE COMPONENTE CONEXE
void Graph::print_Number_Of_Connected_Components(char *file){
ofstream g(file);
g<<this->count_Connected_Components();
}
void Graph::DFS(int node, vector<int>& visited){
//marcam nodul curent ca vizitat
visited[node] = 1;
//parcurgem vecinii si pentru fiecare vecin nevizitat aplicam recursiv DFS
for(int i = 0; i < this->graph_adjacency_list[node].size(); i++){
if(visited[this->graph_adjacency_list[node][i]] == 0){
DFS(this->graph_adjacency_list[node][i],visited);
}
}
}
void Graph::print_Biconnected_Components(char *file){
ofstream g(file);
vector<unordered_set<int>> biconnected_components;
biconnected_components = this->create_Biconnected_Components();
g<<biconnected_components.size()<<"\n";
for(int i=0; i<biconnected_components.size(); i++){
for(unordered_set<int>::iterator it = biconnected_components[i].begin(); it != biconnected_components[i].end(); it++){
g<<*it<<" ";
}
g<<"\n";
}
}
void Graph::print_Strongly_Connected_Components(char *file){
ofstream g(file);
vector<vector<int>> strongly_connected_components;
strongly_connected_components = this->Create_Strongly_Connected_Components();
g<<strongly_connected_components.size()<<"\n";
for(int i = 0; i < strongly_connected_components.size(); i++){
for(int j = 0; j < strongly_connected_components[i].size(); j++){
g << strongly_connected_components[i][j] << " ";
}
g<<"\n";
}
}
void Graph::print_Topological_Sort(char *file){
ofstream g(file);
stack<int> sortare;
vector<int> viz;
viz = this->initViz();
for(int i = 1; i <= this->graph_Nodes; i++){
if(viz[i] == 0){
DFSSortareTopologica(i, viz, sortare);
}
}
while(sortare.size() != 0){
g<<sortare.top()<<" ";
sortare.pop();
}
}
void Graph::generateFromSecventa(char *file_in, char *file_out){
ifstream f(file_in);
ofstream g(file_out);
vector<int> values;
int number_of_values;
f>>number_of_values;
values.resize(number_of_values + 1);
for(int i = 1; i <= number_of_values; i++){
int grad;
f>>grad;
values[i] = grad;
}
if(this->hakimi(values,number_of_values)) g<<"DA";
else g<<"NU";
}
void Graph::print_Critical_Edges(char *file){
ofstream g(file);
vector<vector<int>> critical_edges;
critical_edges = this->Find_Critical_Edges();
g<<"Numar muchii critice: "<<critical_edges.size()<<"\n";
for(int i = 0; i < critical_edges.size(); i++){
for(int j = 0; j<critical_edges[i].size(); j++){
g<<critical_edges[i][j]<<" ";
}
g<<"\n";
}
}
void Graph::print_APM(char *file){
ofstream g(file);
int cost_APM = 0;
vector<pair<int, int>> APM_edges;
APM_edges = create_APM(cost_APM);
g<<cost_APM<<"\n";
g<<this->graph_Nodes - 1<<"\n";
for(int i = 0; i < this->graph_Nodes - 1; i++){
g<<APM_edges[i].first<<" "<<APM_edges[i].second<<"\n";
}
}
//METODELE PRIVATE:
//CITIREA BFS INFOARENA - CITIREA UNUI GRAF ORIENTAT FARA COSTURI CE CUPRINDE SI NODUL SURSA DE LA CARE SE VOR CALCULA DRUMURILE MINIME
int Graph::read_BFS_Infoarena(char *file){
ifstream f(file);
vector<int> aux;
int nrMuchii, nodSursa;
f>>this->graph_Nodes;
this->graph_adjacency_list.assign(this->graph_Nodes + 1, aux);
f>>nrMuchii;
f>>nodSursa;
for(int i=0; i<nrMuchii; i++){
int x,y;
f>>x>>y;
this->graph_adjacency_list[x].push_back(y);
}
return nodSursa;
}
vector<int>Graph::create_Minimum_Paths(int nod){
//initializam vectorul de distante minime
vector<int> distante;
distante.assign(this->graph_Nodes + 1, 0);
int curent;
//in coada vom pune nodurile pe massura ce le parcurgem
queue<int> coada;
//initial toate nodurile sunt nevizitate, asaa ca initializam viz[orice nod] = 0
vector<int> viz;
viz = this->initViz();
//adaugam nodul sursa in coada si il marcam ca si vizitat
coada.push(nod);
viz[nod] = 1;
//actualizam vectorul de distante pentru nodul curent cu distanta pana la el, adica 1
distante[nod] = distante[nod] + 1;
//facem BFS-ul
while(!coada.empty()){
curent = coada.front();
//parcurgem vecinii nodului curent si pe fiecare vecin nevizitat il adaugam in coada, ii actualizam distanta pana la el si il marcam ca si vizitat
for(int i=0; i < this->graph_adjacency_list[curent].size(); i++){
if(viz[this->graph_adjacency_list[curent][i]] == 0){
coada.push(this->graph_adjacency_list[curent][i]);
distante[coada.back()] = distante[curent]+1;
viz[this->graph_adjacency_list[curent][i]] = 1;
}
}
//am terminat cu nodul curent, il scoatem din coada
coada.pop();
}
return distante;
}
void Graph::print_Minimum_Paths(char *file, vector<int> distances){
ofstream g(file);
for(int i=1; i <= this->graph_Nodes; i++){
g<<distances[i] - 1<<" ";
}
}
//crearea vectorului cu nodurile nevizitate
vector<int>Graph::initViz(){
vector<int> viz;
viz.assign(this->graph_Nodes + 1, 0);
return viz;
}
//numararea componentelor conexe
int Graph::count_Connected_Components(){
//numarul componentelor conexe il vom tine in nr
int nr = 0;
//initial toate nodurile sunt nevizitate
vector<int> viz;
viz = this->initViz();
//pentru fiecare nod nevizitat parcurgem din copil in copil prin DFS; de fiecare data cand dam de un nod nevizitat inseamna ca avem o noua componenta conexa
for(int nod = 1; nod <= this->graph_Nodes; nod++){
if(viz[nod] == 0){
nr++;
DFS(nod,viz);
}
}
return nr;
}
vector<unordered_set<int>>Graph::create_Biconnected_Components(){
vector<unordered_set<int>> biconnected_components;
stack<pair <int, int>> StivaMuchiiComponentaBiconexaCurenta;
vector<int> vizPasi;
vector<int> low_link_values;
vizPasi.assign(this->graph_Nodes + 1, -1);
low_link_values.resize(this->graph_Nodes + 1);
DFSBiconnected(1,0,0,vizPasi,low_link_values,biconnected_components,StivaMuchiiComponentaBiconexaCurenta);
return biconnected_components;
}
void Graph::DFSBiconnected(int nodCurent, int precedent, int pas, vector<int>& vizPasi, vector<int>& low_link_values,vector<unordered_set<int>>& biconnected_components,stack<pair <int, int>>& StivaMuchiiComponentaBiconexaCurenta){
//marcam ca vizitat nodul curent
vizPasi[nodCurent] = pas;
//momentan nivelul minim de intoarcere e nivelul curent, adica pasul
low_link_values[nodCurent] = pas;
//parcurgem vecinii nodului curent
for(int i=0; i<this->graph_adjacency_list[nodCurent].size(); i++){
int vecinCurent = this->graph_adjacency_list[nodCurent][i];
if(vecinCurent != precedent){
//verificam pe ce fel de muchie suntem
//daca vecinul curent a mai fost vizitat inseamna ca am dat de o muchie de intoarcere, altfel suntem pe o muchie in jos
if(vizPasi[vecinCurent] == -1){
//am dat de o noua muchie din componenta biconexa curenta, asa ca o adaugam in stiva
StivaMuchiiComponentaBiconexaCurenta.push(make_pair(nodCurent, vecinCurent));
//apelam DFS pentru vecinul curent
DFSBiconnected(vecinCurent, nodCurent, pas + 1,vizPasi,low_link_values,biconnected_components,StivaMuchiiComponentaBiconexaCurenta);
//verificam daca atunci cand ne am dus mai departe in graf
// am dat de o muchie de intoarcere care ne duce mai sus decat ne ducea nodul acesta inainte
if(low_link_values[nodCurent] > low_link_values[vecinCurent]){
low_link_values[nodCurent] = low_link_values[vecinCurent];
}
//verificam daca am ajuns la finalul componentei biconexe
if(low_link_values[vecinCurent] >= vizPasi[nodCurent]){
//trebuie sa adaugam noua componenta biconexa in vectorul de componenete biconexe
//si sa golim stiva cu muchiile componentei biconexe curente
unordered_set<int> aux;
int aux1, aux2;
do{
aux1 = StivaMuchiiComponentaBiconexaCurenta.top().first;
aux2 = StivaMuchiiComponentaBiconexaCurenta.top().second;
aux.insert(aux1);
aux.insert(aux2);
StivaMuchiiComponentaBiconexaCurenta.pop();
} while (aux1 != nodCurent || aux2 != vecinCurent);
biconnected_components.push_back(aux);
}
}else{
//avem o muchie de intoarcere, trebuie sa verificam daca nu cumva duce mai sus
if(low_link_values[nodCurent] > vizPasi[vecinCurent]){
low_link_values[nodCurent] = vizPasi[vecinCurent];
}
}
}
}
}
vector<vector<int>>Graph::Create_Strongly_Connected_Components(){
vector<vector<int>> strongly_connected_components;
stack<int> StivaComponentaTareConexaCurenta;
int arrivalTimeCurent = 0;
vector<int> isInStiva;
isInStiva.assign(this->graph_Nodes + 1, 0);
vector<int> arrivalTime;
arrivalTime.assign(this->graph_Nodes + 1, -1);
vector<int> lowLinkValue;
lowLinkValue.resize(this->graph_Nodes + 1);
for(int i=1; i<=this->graph_Nodes; i++){
if(arrivalTime[i] == -1){
tarjan(i,StivaComponentaTareConexaCurenta,isInStiva,arrivalTime, arrivalTimeCurent,lowLinkValue,strongly_connected_components);
}
}
return strongly_connected_components;
}
void Graph::tarjan(int nod,stack<int>& StivaComponentaTareConexaCurenta,vector<int>& isInStiva,vector<int>& arrivalTime, int& arrivalTimeCurent, vector<int>& lowLinkValue, vector<vector<int>>& strongly_connected_components){
//adaugam nodul in componenta tare conexa curenta, adica in StivaComponentaTareConexaCurenta
StivaComponentaTareConexaCurenta.push(nod);
//marcam nodul ca facand parte din componenta tare conexa curenta prin vectorul isInStiva
isInStiva[nod] = 1;
//marcam nodul ca vizitat, atribuindu-i chiar timpul de ajungere
arrivalTime[nod] = arrivalTimeCurent;
//valoarea low Link momentan este tot nivelul nodului curent
lowLinkValue[nod] = arrivalTimeCurent;
//marim timpul de ajungere pentru urmatorul pas
arrivalTimeCurent++;
//parcurgem vecinii nodului curent, facand un DFS
for(int i=0; i<this->graph_adjacency_list[nod].size(); i++){
int vecinCurent = this->graph_adjacency_list[nod][i];
//verificam daca vecinul curent nu a fost inca vizitat
if(arrivalTime[vecinCurent] == -1){
//aplicam tarjan pe nodul curent
tarjan(vecinCurent,StivaComponentaTareConexaCurenta,isInStiva,arrivalTime, arrivalTimeCurent,lowLinkValue,strongly_connected_components);
//la iesire incercam sa minimizam valoarea low link a nodului curent, daca vecinul la care suntem a facut in timpul tarjan-ului una mai mica
if(lowLinkValue[vecinCurent] < lowLinkValue[nod]){
lowLinkValue[nod] = lowLinkValue[vecinCurent];
}
}else{ //daca vecinul a fost deja vizitat
//verificam daca vizitarea s-a produs in cadrul componentei tare conexe curente
if(isInStiva[vecinCurent] == 1){
//incercam sa minimizam valoarea low link a nodului curent, in cazul in care vecinul curent ajunge la un nod mai indepartat decat valoarea noastra curenta
if(lowLinkValue[vecinCurent] < lowLinkValue[nod]){
lowLinkValue[nod] = lowLinkValue[vecinCurent];
}
}
}
}
//verificam daca nodul curent inchide o componenta tare conexa
if(arrivalTime[nod] == lowLinkValue[nod]){
//trebuie sa mutam componenta tare conexa curenta din stiva in vectorul cu toate componentele tare conexe din graf
vector<int> aux;
int nodAux;
do{
nodAux = StivaComponentaTareConexaCurenta.top();
aux.push_back(nodAux);
StivaComponentaTareConexaCurenta.pop();
isInStiva[nodAux] = 0;
}while(nodAux != nod);
strongly_connected_components.push_back(aux);
}
}
void Graph::DFSSortareTopologica(int nod, vector<int>& viz, stack<int>& sortare){
viz[nod] = 1;
for(int i=0; i<this->graph_adjacency_list[nod].size();i++){
int vecinCurent = this->graph_adjacency_list[nod][i];
if(viz[vecinCurent] == 0){
DFSSortareTopologica(vecinCurent, viz, sortare);
}
}
sortare.push(nod);
}
bool Graph::hakimi(vector<int>& values, int number_of_values){
int suma = 0;
sort(values.begin()+1, values.end(), greater<int>());
while(values[0] > 0){
int gradCurent = values[0];
suma = suma + gradCurent;
if(gradCurent > number_of_values - 1){
return false;
}
values.erase(values.begin() + 0);
for(int i=1; i<=gradCurent; i++){
values[i]--;
if(values[i]<0){
return false;
}
}
}
if(values[0] == 0 && suma % 2 == 0) return true;
return false;
}
vector<vector<int>> Graph::Find_Critical_Edges(){
int arrivalTimeCurent = 0;
vector<vector<int>> vectorMuchiiiCritice;
vector<int> viz;
viz = this->initViz();
vector<int> prec;
prec.resize(this->graph_Nodes + 1);
vector<int> low_link_values;
low_link_values.resize(this->graph_Nodes + 1);
vector<int> arrival_times;
arrival_times.assign(this->graph_Nodes + 1, -1);
for(int i = 1; i <= this->graph_Nodes; i++){
if(viz[i] == 0){
DFSCriticals(i, arrivalTimeCurent,vectorMuchiiiCritice, viz, arrival_times, low_link_values, prec);
}
}
return vectorMuchiiiCritice;
}
void Graph::DFSCriticals(int nodCurent, int& pas, vector<vector<int>>& critical_edges, vector<int>& viz, vector<int>& arrivalTimes, vector<int>& lowLinkValues, vector<int>& prec){
//marcam nodul ca vizitat in vectorul viz, actualizam timpul lui de ajungere iar low link value momentan e fix timpul de ajungere
viz[nodCurent] = 1;
arrivalTimes[nodCurent] = pas;
lowLinkValues[nodCurent] = pas;
//crestem timpul de ajungere pentru urmatorul DFS
pas++;
//parcurgem vecinii nodului
for(int i = 0; i < graph_adjacency_list[nodCurent].size(); i++){
int vecinCurent = graph_adjacency_list[nodCurent][i];
//pentru fiecare vecin nevizitat, ii actualizam precedentul ca fiind nodul ai carui vecini ii parcurgem si intram in parcurgerea vecinilor vecinului
if (viz[vecinCurent] == 0){
prec[vecinCurent] = nodCurent;
DFSCriticals(vecinCurent, pas,critical_edges,viz,arrivalTimes,lowLinkValues,prec);
//la iesirea din DFS incercam sa minimizam low link value pentru nodul curent, in cazul in care vecinul poate ajunge la un nod mai indepartat
if(lowLinkValues[nodCurent] > lowLinkValues[vecinCurent]){
lowLinkValues[nodCurent] = lowLinkValues[vecinCurent];
}
//in cazul in care este o muchie critica, o adaugam in vectorul de muchii critice
if (lowLinkValues[vecinCurent] > arrivalTimes[nodCurent]){
critical_edges.push_back({nodCurent,vecinCurent});
}
}
else{
//pentru fiecare vecin deja vizitat incercam sa minimzam low link value pentru nodul nostru
if (vecinCurent != prec[nodCurent]){
if(lowLinkValues[nodCurent] > arrivalTimes[vecinCurent]){
lowLinkValues[nodCurent] = arrivalTimes[vecinCurent];
}
}
}
}
}
vector<pair<int,int>> Graph::create_APM(int &cost_APM) {
vector<pair<int,int>> APM_edges;
vector<int> vec;
vector<int> poz;
vector<int> distante;
vector<int> heap;
distante.assign(this->graph_Nodes + 1, 200000200);
vec.assign(this->graph_Nodes + 1, 0);
poz.assign(this->graph_Nodes + 1, 0);
heap.push_back(0);
distante[1] = 0;
introduce_in_APM(1,distante,vec);
for(int i = 2; i <= this->graph_Nodes; i++){
introduce_in_min_heap(i,heap,poz,distante);
}
for(int i = 1; i < this->graph_Nodes; i++){
int rad;
rad = extract_root_min_heap(heap,poz,distante);
introduce_in_APM(rad,distante,vec);
cost_APM = cost_APM + distante[rad];
APM_edges.push_back(make_pair(rad,vec[rad]));
for(int j = 0; j < this->graph_adjacency_list_with_costs[rad].size(); j++){
int nod;
nod = this->graph_adjacency_list_with_costs[rad][j].first;
if(poz[nod]) pop(poz[nod],heap,poz,distante);
}
}
return APM_edges;
}
void Graph::introduce_in_APM(int nod, vector<int>& distante, vector<int>& vec) {
for(int i = 0; i < this->graph_adjacency_list_with_costs[nod].size(); i++){
int vecin, cost;
vecin = this->graph_adjacency_list_with_costs[nod][i].first;
cost = this->graph_adjacency_list_with_costs[nod][i].second;
distante[vecin] = min(distante[vecin],cost);
if(distante[vecin] == cost) vec[vecin] = nod;
}
}
void Graph::introduce_in_min_heap(int nod, vector<int>& heap, vector<int>& poz, vector<int> distante) {
heap.push_back(nod);
poz[nod] = heap.size() - 1;
pop(heap.size() - 1,heap,poz,distante);
}
int Graph::extract_root_min_heap(vector<int>& heap,vector<int>& poz, vector<int> distante) {
int rad;
rad = heap[1];
swap(heap[1],heap[heap.size() - 1]);
swap(poz[heap[1]], poz[heap[heap.size() - 1]]);
heap.pop_back();
push(1,heap,poz,distante);
poz[rad] = 0;
return rad;
}
void Graph::pop(int index, vector<int>& heap, vector<int>& poz, vector<int>& distante) {
while(index > 1 && distante[heap[index]] < distante[heap[index / 2]]){
swap(heap[index], heap[index / 2]);
swap(poz[heap[index]], poz[heap[index / 2]]);
index = index / 2;
}
}
void Graph::push(int index, vector<int>& heap, vector<int>& poz, vector<int>& distante) {
while((index * 2 <= heap.size() - 1 && distante[heap[index]] > distante[heap[index * 2]]) ||
(index * 2 + 1 <= heap.size() - 1 && distante[heap[index]] > distante[heap[index * 2 + 1]])){
if(distante[heap[index * 2]] < distante[heap[index * 2 + 1]] || index * 2 + 1 > heap.size() - 1){
swap(heap[index], heap[index * 2]);
swap(poz[heap[index]], poz[heap[index * 2]]);
index = index * 2;
}else{
swap(heap[index], heap[index * 2 + 1]);
swap(poz[heap[index]], poz[heap[index * 2 + 1]]);
index = index * 2 + 1;
}
}
}
int main() {
/*BFS INFOARENA*/
/*Graph g;
g.show_Shortest_Paths("../bfs.in","../bfs.out");*/
/*DFS INFOARENA*/
/*Graph g;
g.read_Unoriented_Graph_Without_Costs("../dfs.in");
g.print_Number_Of_Connected_Components("../dfs.out");*/
/*COMPONENTE BICONEXE INFOARENA*/
/*Graph g;
g.read_Unoriented_Graph_Without_Costs("../biconex.in");
g.print_Biconnected_Components("../biconex.out");*/
/*COMPONENTE TARE CONEXE INFOARENA*/
/*Graph g;
g.read_Oriented_Graph_Without_Costs("../ctc.in");
g.print_Strongly_Connected_Components("../ctc.out");*/
/*SORTARE TOPOLOGICA INFOARENA*/
/*Graph g;
g.read_Oriented_Graph_Without_Costs("../sortaret.in");
g.print_Topological_Sort("../sortaret.out");*/
/*HAVEL HAKIMI*/
/*Graph g;
g.generateFromSecventa("../hakimi.in","../hakimi.out");*/
/*MUCHII CRITICE GRAF NEORIENTAT LEETCODE*/
/*Graph g;
g.read_Unoriented_Graph_Without_Costs("../critice.in");
g.print_Critical_Edges("../critice.out");*/
/*APM - ALGORITMUL LUI PRIM*/
Graph g;
g.read_Unoriented_Graph_With_Costs("../apm.in");
g.print_APM("../apm.out");
return 0;
}