#include <iostream>
#include <fstream>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
using namespace std;
ifstream f("apm.in");
ofstream g("apm.out");
struct Weigthed_Edge{
int u,v,weight;
Weigthed_Edge(int a, int b, int c):u(a),v(b),weight(c){}
~Weigthed_Edge() = default;
bool operator<(const Weigthed_Edge &b) const
{
return this->weight<b.weight;
}
};
class Graph{
private:
int n;
vector < vector<int> > la;
vector<vector<int>> componente_biconexe;
vector<vector<int>> componente_tconexe;
vector<int> lowest, level, father, degrees;
vector<bool> onstack;
stack<int> S;
stack<pair<int,int>> edges_biconexe;
int index;
void dfs(int nod_crt, vector<bool> &viz);
void dfs_biconexe(int nod_crt);
void dfs_tarjan(int nod_crt);
void add_cmp_biconexa(int x, int y);
bool consume(int nr, int poz);
public:
Graph(int nr_noduri):n(nr_noduri), la(nr_noduri+1), componente_biconexe(0), componente_tconexe(0), lowest(0), level(0), father(0), onstack(0), index(0), degrees(0){}
~Graph() = default;
void add_edge(int from, int to){
la[from].push_back(to);
}
void bfs_print_dist(int start=1); // Starting from node 1 by default
int nr_conexe_dfs();
void print_sortare_topologica(ostream &out);
void print_comp_biconexe_udg(ostream &out);
void print_comp_tconexe_dg(ostream &out);
bool Havel_Hakimi(vector<int> &grade_noduri);
void static print_dist_BellmanFord(ostream &out, int start, vector<Weigthed_Edge> &edges, int nn);
void static print_APM_Kruskal(ostream &out, vector<Weigthed_Edge> &edges, int nn);
void static solve_disjoint(istream &in, ostream &out);
void static update_disjoint(int x, vector<int> &father);
};
void Graph::bfs_print_dist(int start)
{
vector<int> dist(n+1,0);
queue<int> q;
int nod_crt;
q.push(start);
dist[start]=1;
while(!q.empty())
{
nod_crt = q.front();
q.pop();
for(auto nod_vecin: la[nod_crt])
{
if(dist[nod_vecin] == 0)
{
dist[nod_vecin] = dist[nod_crt] + 1;
q.push(nod_vecin);
}
}
}
for(int i=1;i<=n;++i)
g<<dist[i]-1<<' ';
}
int Graph::nr_conexe_dfs()
{
vector<bool> viz(n+1, false);
int nr_c=0;
for(int i=1;i<=n;++i)
{
if(!viz[i])
{
++nr_c;
dfs(i, viz);
}
}
return nr_c;
}
void Graph::print_sortare_topologica(ostream &out)
{
queue<int> zero_nodes;
degrees.resize(n+1,0);
int nod_curent, i;
for(i=1;i<=n;++i)
{
for(auto nod_vecin: la[i])
++degrees[nod_vecin];
}
for(i=1; i<=n;++i)
if(degrees[i] == 0)
zero_nodes.push(i);
if(zero_nodes.empty())
{
cout<<"Cyclic Graph. Can't sort.";
return;
}
while(!zero_nodes.empty())
{
nod_curent = zero_nodes.front();
zero_nodes.pop();
out<<nod_curent<<' ';
for(auto nod_vecin: la[nod_curent])
{
--degrees[nod_vecin];
if(degrees[nod_vecin] == 0)
zero_nodes.push(nod_vecin);
}
}
degrees.clear();
}
void Graph::dfs(int nod_crt, vector<bool> &viz)
{
for(auto nod_vecin: la[nod_crt])
{
if(!viz[nod_vecin])
{
viz[nod_vecin] = true;
dfs(nod_vecin, viz);
}
}
}
void Graph::add_cmp_biconexa(int x, int y)
{
int a,b;
vector<int> componenta_biconexa;
do
{
a=edges_biconexe.top().first;
b=edges_biconexe.top().second;
edges_biconexe.pop();
componenta_biconexa.push_back(a);
componenta_biconexa.push_back(b);
}while((a!=x || b!=y) && !edges_biconexe.empty());
sort(componenta_biconexa.begin(), componenta_biconexa.end() );
componente_biconexe.push_back(componenta_biconexa);
}
void Graph::dfs_biconexe(int nod_crt)
{
level[nod_crt] = level[father[nod_crt]] + 1;
lowest[nod_crt] = level[nod_crt];
for(auto nod_vecin: la[nod_crt])
{
if(level[nod_vecin] == 0)
{
father[nod_vecin] = nod_crt;
edges_biconexe.push(make_pair(nod_crt, nod_vecin));
dfs_biconexe(nod_vecin);
if(lowest[nod_vecin] >= level[nod_crt])
add_cmp_biconexa(nod_crt, nod_vecin);
lowest[nod_crt] = min(lowest[nod_crt], lowest[nod_vecin]);
}
else if(nod_vecin!= father[nod_crt])
lowest[nod_crt] = min(lowest[nod_crt], level[nod_vecin]);;
}
}
void Graph::print_comp_biconexe_udg(ostream &out)
{
lowest.resize(n+1, 0);
level.resize(n+1, 0);
father.resize(n+1, 0);
dfs_biconexe(1);
out<<componente_biconexe.size()<<'\n';
for(auto componenta:componente_biconexe)
{
out<<componenta[0];
for(int i=1;i<componenta.size();++i)
if(componenta[i]!=componenta[i-1])
out<<' '<<componenta[i];
out<<'\n';
}
lowest.clear();
level.clear();
father.clear();
}
void Graph::dfs_tarjan(int nod_crt)
{
++index;
level[nod_crt] = index;
lowest[nod_crt] = index;
S.push(nod_crt);
onstack[nod_crt] = true;
for(auto nod_vecin : la[nod_crt])
{
if(level[nod_vecin]==0)
{
dfs_tarjan(nod_vecin);
lowest[nod_crt] = min(lowest[nod_crt], lowest[nod_vecin]);
}
else if(onstack[nod_vecin])
lowest[nod_crt] = min(lowest[nod_crt], level[nod_vecin]);
}
if(level[nod_crt] == lowest[nod_crt])
{
vector<int> comp_tconexa;
int st;
do
{
st = S.top();
S.pop();
onstack[st]=false;
comp_tconexa.push_back(st);
}while(st!=nod_crt);
componente_tconexe.push_back(comp_tconexa);
}
}
void Graph::print_comp_tconexe_dg(ostream &out)
{
onstack.resize(n+1, false);
lowest.resize(n+1, 0);
level.resize(n+1, 0);
for(int i=1;i<=n;++i)
{
if(level[i] == 0)
{
dfs_tarjan(i);
}
}
out<<componente_tconexe.size()<<'\n';
for(auto comp: componente_tconexe)
{
for(auto nod:comp)
out<<nod<<' ';
out<<'\n';
}
onstack.clear();
lowest.clear();
level.clear();
}
bool Graph::consume(int nr, int poz)
{
if(nr == 0)
return true;
if(poz == 0)
return false;
if(nr>degrees[poz])
{
bool ok = consume(n-degrees[poz], poz-1);
degrees[poz-1]+=degrees[poz];
degrees[poz]=0;
return ok;
}
degrees[poz-1]+=nr;
degrees[poz] -=nr;
return true;
}
bool Graph::Havel_Hakimi(vector<int>& grade_noduri)
{
int sum=0, max_grade = 0;
degrees.resize(n, 0);
for(auto x: grade_noduri)
{
if(x>=n)
{
degrees.clear();
return false;
}
++degrees[x];
sum+=x;
if(x>max_grade)
max_grade = x;
}
if( sum & 1)
{
degrees.clear();
return false;
}
if(max_grade <=1 )
{
degrees.clear();
return true;
}
for(int i=max_grade; i; --i)
{
while(degrees[i])
{
--degrees[i];
if( !consume(i, i) )
{
degrees.clear();
return false;
}
}
}
degrees.clear();
return true;
}
void get_degrees(const char* f_name, vector<int>& v)
{
ifstream in(f_name);
int n,m,a,b;
in>>n>>m;
v.resize(n, 0);
for(int i=0;i<m;++i)
{
f>>a>>b;
++v[a-1];
++v[b-1];
}
}
void Graph::print_dist_BellmanFord(ostream &out, int start, vector<Weigthed_Edge> &edges, int nn)
{
vector<int> distance(nn+1, 1111);
distance[start] = 0;
for(int i=1;i<nn;++i)
{
for(auto x: edges)
if(distance[x.u] + x.weight < distance[x.v])
distance[x.v] = distance[x.u] + x.weight ;
}
for(auto x: edges)
if(distance[x.u] + x.weight < distance[x.v])
{
out<<"Ciclu negativ!";
return;
}
for(int i=1; i<=nn;++i)
if(i!=start)
out<<distance[i]<<' ';
}
void Graph::update_disjoint(int x, vector<int> &father)
{
if(x!=father[x])
update_disjoint(father[x], father);
father[x] = father[father[x]];
}
void Graph::print_APM_Kruskal(ostream &out, vector<Weigthed_Edge> &edges, int nn) // Will print the total cost of the APM, the number of edges
{ // and a list of pairs (x, y) representing the chosen edges
int nr_chosen = 0, i=0, sum=0;
int x, y;
vector<pair<int,int>> chosen_edges;
vector<int> father(nn+1);
vector<int> height(nn+1,0);
for(int k=1; k<=nn; ++k)
father[k] = k;
sort(edges.begin(), edges.end());
while(i<edges.size() && nr_chosen<nn-1)
{
x = edges[i].u;
y = edges[i].v;
update_disjoint(x, father);
update_disjoint(y, father);
if(father[x] != father[y]) /// the nodes are not in the same tree so far
{
sum += edges[i].weight;
++nr_chosen;
chosen_edges.push_back(make_pair(edges[i].u, edges[i].v)); /// add edge to the list of selected edges
if(height[father[x]] > height[father[y]])
father[father[y]] = father[x];
else if(height[father[y]] > height[father[x]])
father[father[x]] = father[y];
else
{
father[father[y]] = father[x];
++height[father[x]];
}
/*
if(height[x] > height[y])
father[y] = x; /// y becomes a part of x's tree and height of x stays the same
else if(height[x] < height[y])
father[x] = y; /// x becomes a part of y's tree and height of y stays the same
else
{
father[y] = x; /// the tree of root x and the tree of root y have the same height
++height[x]; /// either one can become the main root but the height is increased by 1
}*/
}
++i;
}
out<<sum<<'\n'<<nn-1;
for(auto edge: chosen_edges)
out<<'\n'<<edge.first<<' '<<edge.second;
}
void Graph::solve_disjoint(istream &in, ostream &out)
{
int n,m;
int op, x, y;
in>>n>>m;
vector<int> father(n+1);
vector<int> height(n+1,0);
for(int k=1; k<=n; ++k)
father[k] = k;
for(int i=0;i<m;++i)
{
f>>op>>x>>y;
update_disjoint(x, father);
update_disjoint(y, father);
if(op == 1)
{
//father[father[y]] = father[x];
if(height[father[x]] > height[father[y]])
father[father[y]] = father[x];
else if(height[father[y]] > height[father[x]])
father[father[x]] = father[y];
else
{
father[father[y]] = father[x];
++height[father[x]];
}
}
else
{
if(father[x] == father[y])
out<<"DA\n";
else
out<<"NU\n";
}
}
}
int main()
{
int n,m,x;
int a,b,c;
//Graph::solve_disjoint(f,g);
f>>n;
f>>m;
//Graph gr(n);
vector<Weigthed_Edge> edges;
for(int i=0;i<m;++i)
{
f>>a>>b>>c;
edges.push_back({a,b,c});
//gr.add_edge(a,b);
//gr.add_edge(b,a);
}
f.close();
Graph::print_APM_Kruskal(g, edges, n);
g.close();
return 0;
}