Pagini recente » Infoarena Monthly 2012 - Runda 9, Clasament | Cod sursa (job #15199) | Cod sursa (job #296104) | Cod sursa (job #2067483) | Cod sursa (job #2764458)
// A C++ program to find strongly connected components in a given
// directed graph using Tarjan's algorithm (single DFS)
#include <iostream>
#include <fstream>
#include <algorithm>
#include <list>
#include <stack>
#include <vector>
#define NIL -1
using namespace std;
ifstream f ("ctc.in");
ofstream g ("ctc.out");
int n, m, scc;
vector <int> vec[100001];
// A class that represents an directed graph
class Graph
{
int V; // No. of vertices
list<int> *adj; // A dynamic array of adjacency lists
// A Recursive DFS based function used by SCC()
void SCCUtil(int u, int disc[], int low[],
stack<int> *st, bool stackMember[]);
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // function to add an edge to graph
void SCC(); // prints strongly connected components
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
}
// A recursive function that finds and prints strongly connected
// components using DFS traversal
// u --> The vertex to be visited next
// disc[] --> Stores discovery times of visited vertices
// low[] -- >> earliest visited vertex (the vertex with minimum
// discovery time) that can be reached from subtree
// rooted with current vertex
// *st -- >> To store all the connected ancestors (could be part
// of SCC)
// stackMember[] --> bit/index array for faster check whether
// a node is in stack
void Graph::SCCUtil(int u, int disc[], int low[], stack<int> *st,
bool stackMember[])
{
// A static variable is used for simplicity, we can avoid use
// of static variable by passing a pointer.
static int time = 0;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
st->push(u);
stackMember[u] = true;
// Go through all vertices adjacent to this
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i; // v is current adjacent of 'u'
// If v is not visited yet, then recur for it
if (disc[v] == -1)
{
SCCUtil(v, disc, low, st, stackMember);
// Check if the subtree rooted with 'v' has a
// connection to one of the ancestors of 'u'
// Case 1 (per above discussion on Disc and Low value)
low[u] = min(low[u], low[v]);
}
// Update low value of 'u' only of 'v' is still in stack
// (i.e. it's a back edge, not cross edge).
// Case 2 (per above discussion on Disc and Low value)
else if (stackMember[v] == true)
low[u] = min(low[u], disc[v]);
}
// head node found, pop the stack and print an SCC
int w = 0; // To store stack extracted vertices
if (low[u] == disc[u])
{
scc++;
while (st->top() != u)
{
w = (int) st->top();
if (w != 0)
vec[scc].push_back(w);
st->pop();
}
w = (int) st->top();
if (w != 0)
vec[scc].push_back(w);
stackMember[w] = false;
st->pop();
}
}
// The function to do DFS traversal. It uses SCCUtil()
void Graph::SCC()
{
int *disc = new int[V];
int *low = new int[V];
bool *stackMember = new bool[V];
stack<int> *st = new stack<int>();
// Initialize disc and low, and stackMember arrays
for (int i = 0; i < V; i++)
{
disc[i] = NIL;
low[i] = NIL;
stackMember[i] = false;
}
// Call the recursive helper function to find strongly
// connected components in DFS tree with vertex 'i'
for (int i = 0; i < V; i++)
if (disc[i] == NIL)
SCCUtil(i, disc, low, st, stackMember);
}
// Driver program to test above function
int main()
{
cin >> n >> m;
Graph g1(n + 1);
for (int i = 1; i <= m; i++)
{
int x, y;
cin >> x >> y;
g1.addEdge(x, y);
}
g1.SCC();
cout << scc - 1;
for (int i = 1; i <= scc; i++)
{
sort(vec[i].begin(), vec[i].end());
for (int j = 0; j < vec[i].size(); j++)
{
cout << vec[i][j] << " ";
}
cout << endl;
}
}