Pagini recente » Cod sursa (job #2766180) | Cod sursa (job #1907516) | Cod sursa (job #2449665) | Cod sursa (job #2369156) | Cod sursa (job #2753626)
import math
class FibonacciHeap:
# internal node class
class Node:
def __init__(self, key, value):
self.key = key
self.value = value
self.parent = self.child = self.left = self.right = None
self.degree = 0
self.mark = False
# function to iterate through a doubly linked list
def iterate(self, head):
node = stop = head
flag = False
while True:
if node == stop and flag is True:
break
elif node == stop:
flag = True
yield node
node = node.right
# pointer to the head and minimum node in the root list
root_list, max_node = None, None
# maintain total node count in full fibonacci heap
total_nodes = 0
# return min node in O(1) time
def find_max(self):
return self.max_node
# extract (delete) the min node from the heap in O(log n) time
# amortized cost analysis can be found here (http://bit.ly/1ow1Clm)
def extract_max(self):
z = self.max_node
if z is not None:
if z.child is not None:
# attach child nodes to root list
for child in self.iterate(z.child):
self.merge_with_root_list(child)
child.parent = None
self.remove_from_root_list(z)
# set new min node in heap
if z == z.right:
self.max_node = self.root_list = None
else:
self.max_node = z.right
self.consolidate()
self.total_nodes -= 1
return z
# insert new node into the unordered root list in O(1) time
# returns the node so that it can be used for decrease_key later
def insert(self, key, value=None):
n = self.Node(key, value)
n.left = n.right = n
self.merge_with_root_list(n)
if self.max_node is None or n.key > self.max_node.key:
self.max_node = n
self.total_nodes += 1
return n
# merge two fibonacci heaps in O(1) time by concatenating the root lists
# the root of the new root list becomes equal to the first list and the second
# list is simply appended to the end (then the proper min node is determined)
def merge(self, h2):
H = FibonacciHeap()
H.root_list, H.max_node = self.root_list, self.max_node
# fix pointers when merging the two heaps
last = h2.root_list.left
h2.root_list.left = H.root_list.left
H.root_list.left.right = h2.root_list
H.root_list.left = last
H.root_list.left.right = H.root_list
# update min node if needed
if h2.max_node.key > H.max_node.key:
H.max_node = h2.max_node
# update total nodes
H.total_nodes = self.total_nodes + h2.total_nodes
return H
# combine root nodes of equal degree to consolidate the heap
# by creating a list of unordered binomial trees
def consolidate(self):
A = [None] * int(math.log(self.total_nodes) * 2)
for x in self.iterate(self.root_list):
d = x.degree
while A[d] != None:
y = A[d]
if x.key < y.key:
temp = x
x, y = y, temp
self.heap_link(y, x)
A[d] = None
d += 1
A[d] = x
# find new max node - no need to reconstruct new root list below
# because root list was iteratively changing as we were moving
# nodes around in the above loop
for i in range(0, len(A)):
if A[i] is not None:
if A[i].key > self.max_node.key:
self.max_node = A[i]
# actual linking of one node to another in the root list
# while also updating the child linked list
def heap_link(self, y, x):
self.remove_from_root_list(y)
y.left = y.right = y
self.merge_with_child_list(x, y)
x.degree += 1
y.parent = x
y.mark = False
# merge a node with the doubly linked root list
def merge_with_root_list(self, node):
if self.root_list is None:
self.root_list = node
else:
node.right = self.root_list.right
node.left = self.root_list
self.root_list.right.left = node
self.root_list.right = node
# merge a node with the doubly linked child list of a root node
def merge_with_child_list(self, parent, node):
if parent.child is None:
parent.child = node
else:
node.right = parent.child.right
node.left = parent.child
parent.child.right.left = node
parent.child.right = node
# remove a node from the doubly linked root list
def remove_from_root_list(self, node):
if node == self.root_list:
self.root_list = node.right
node.left.right = node.right
node.right.left = node.left
# remove a node from the doubly linked child list
def remove_from_child_list(self, parent, node):
if parent.child == parent.child.right:
parent.child = None
elif parent.child == node:
parent.child = node.right
node.right.parent = parent
node.left.right = node.right
node.right.left = node.left
class Main:
def __init__(self, input_file="mergeheap.in", output_file="mergeheap.out"):
self.input_file = input_file
self.output_file = output_file
self.output = None
self.heaps = {}
def convert_array_to_int(self, arr):
arr = arr.strip("\n ").split(" ")
return list(map(lambda x: int(x), arr))
def write_to_file(self, text):
if not self.output:
self.output = open(self.output_file, "a")
self.output.write(str(text) + "\n")
def start(self):
file = open(self.input_file)
first_line = file.readline()
[N, Q] = self.convert_array_to_int(first_line)
for i in range(Q):
line = file.readline()
args = self.convert_array_to_int(line)
operation = args[0]
if (operation == 1):
heap_num = args[1]
elem = args[2]
if (not heap_num in self.heaps):
self.heaps[heap_num] = FibonacciHeap()
self.heaps[heap_num].insert(elem)
else:
self.heaps[heap_num].insert(elem)
elif operation == 2:
heap_num = args[1]
maximum = self.heaps[heap_num].extract_max()
self.write_to_file(maximum.key)
else:
heap1 = args[1]
heap2 = args[2]
self.heaps[heap1] = self.heaps[heap1].merge(self.heaps[heap2])
self.heaps.pop(heap2)
file.close()
if __name__ == "__main__":
main = Main()
main.start()