Pagini recente » Cod sursa (job #1771043) | Cod sursa (job #1764064) | Cod sursa (job #1356779) | Monitorul de evaluare | Cod sursa (job #2742471)
#include <bits/stdc++.h>
using namespace std;
class Task {
public:
void solve() {
read_input();
print_output(get_result());
}
private:
// numarul maxim de noduri
static constexpr int NMAX = (int)1e5 + 5; // 10^5 + 5 = 100.005
// n = numar de noduri, m = numar de muchii/arce
int n, m;
// adj[node] = lista de adiacenta a nodului node
// exemplu: daca adj[node] = {..., neigh, ...} => exista arcul (node, neigh)
vector<int> adj[NMAX];
// parent[node] = parent of node in the DFS traversal
vector<int> parent;
// found[node] = the timestamp when we found node (we started to visit its subtree)
// Note: The global timestamp is incremented everytime we find a node.
vector<int> found;
// low_link[node] = min { found[x] | x can be accesed from node }
// = the minimum timestamp that node can see (directly or indirectly through its descendents)
vector<int> low_link;
// nodes are pushed into the stack in the order of visiting
stack<int> nodes_stack;
vector<bool> in_stack;
void read_input() {
ifstream fin("ctc.in");
fin >> n >> m;
for (int i = 1, x, y; i <= m; i++) {
fin >> x >> y;
adj[x].push_back(y); // arc (x, y)
}
fin.close();
}
vector<vector<int>> get_result() {
// TODO: Gasiti componentele tare conexe ale grafului orientat cu n noduri, stocat in adj.
// Rezultatul se va returna sub forma unui vector, ale carui elemente sunt componentele tare conexe detectate.
// Nodurile si componentele tare conexe pot fi puse in orice ordine in vector.
//
return tarjan_scc();
}
vector<vector<int>> tarjan_scc() {
// STEP 0: initialize results
parent = vector<int>(n + 1, -1);
found = vector<int>(n + 1, -1);
low_link = vector<int>(n + 1, -1);
in_stack = vector<bool>(n + 1, false);
// STEP 2: visit all nodes for computing all SCCs
vector<vector<int>> all_sccs;
int timestamp = 0; // global timestamp
for (int node = 1; node <= n; ++node) {
if (parent[node] == -1) { // node not visited
parent[node] = node; // convention: the parent of the root is actually the root
cout << node << '\n';
dfs(node, timestamp, all_sccs); // start a new DFS traversal for substree with root in node
}
}
return all_sccs;
}
void dfs(int node, int ×tamp, vector<vector<int>>& all_sccs) {
// STEP 1: a new node is visited - increment the timestamp
found[node] = ++timestamp; // the timestamp when node was found
low_link[node] = found[node]; // node only knows its timestamp
nodes_stack.push(node);
in_stack[node] = true;
// STEP 2: visit each neighbour
int children = 0; // the number of found children
for (auto neigh : adj[node]) {
// STEP 3: check if neigh is already visited
if (parent[neigh] != -1) {
// STEP 3.1: neigh already visited - update low_link[node] with information gained through neigh
if (/*neigh != parent[node] && */in_stack[neigh]) { //
low_link[node] = min(low_link[node], found[neigh]);
}
continue;
}
// STEP 4: save parent and could children
parent[neigh] = node;
++children;
// STEP 5: recursively visit the child subree
dfs(neigh, timestamp, all_sccs);
// STEP 6: update low_link[node] with information gained through neigh
low_link[node] = min(low_link[node], low_link[neigh]);
}
// STEP 8: check for SCCs: node is root in a SCC if low_link[node] == found[node]
if (low_link[node] == found[node]) {
// STEP 8.1: extract current SCC - pop nodes from stack until node is found
vector<int> scc;
do {
auto x = nodes_stack.top();
nodes_stack.pop();
in_stack[x] = false;
scc.push_back(x);
} while(scc.back() != node);
// STEP 8.2: save SCC
all_sccs.push_back(scc);
}
}
void print_output(const vector<vector<int>>& result) {
ofstream fout("ctc.out");
fout << result.size() << '\n';
for (const auto& ctc : result) {
for (auto node : ctc) {
fout << node << ' ';
}
fout << '\n';
}
fout.close();
}
};
// [ATENTIE] NU modifica functia main!
int main() {
// * se aloca un obiect Task pe heap
// (se presupune ca e prea mare pentru a fi alocat pe stiva)
// * se apeleaza metoda solve()
// (citire, rezolvare, printare)
// * se distruge obiectul si se elibereaza memoria
auto* task = new (nothrow) Task(); // hint: cppreference/nothrow
if (!task) {
cerr << "new failed: WTF are you doing? Throw your PC!\n";
return -1;
}
task->solve();
delete task;
return 0;
}