Cod sursa(job #2521181)

Utilizator vladsergheiSerghei Vlad Andrei vladserghei Data 10 ianuarie 2020 15:12:57
Problema Cele mai apropiate puncte din plan Scor 0
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 4 kb
// A divide and conquer program in C++
// to find the smallest distance from a
// given set of points.

#include <bits/stdc++.h>
using namespace std;
ifstream fin("cmap.in");
ofstream fout("cmap.out");
// A structure to represent a Point in 2D plane
class Point
{
    public:
    int x, y;
};

/* Following two functions are needed for library function qsort().
Refer: http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */

// Needed to sort array of points
// according to X coordinate
int compareX(const void* a, const void* b)
{
    Point *p1 = (Point *)a, *p2 = (Point *)b;
    return (p1->x - p2->x);
}

// Needed to sort array of points according to Y coordinate
int compareY(const void* a, const void* b)
{
    Point *p1 = (Point *)a, *p2 = (Point *)b;
    return (p1->y - p2->y);
}

// A utility function to find the
// distance between two points
float dist(Point p1, Point p2)
{
    return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
                (p1.y - p2.y)*(p1.y - p2.y)
            );
}

// A Brute Force method to return the
// smallest distance between two points
// in P[] of size n
float bruteForce(Point P[], int n)
{
    float min = FLT_MAX;
    for (int i = 0; i < n; ++i)
        for (int j = i+1; j < n; ++j)
            if (dist(P[i], P[j]) < min)
                min = dist(P[i], P[j]);
    return min;
}

// A utility function to find
// minimum of two float values
float min(float x, float y)
{
    return (x < y)? x : y;
}


// A utility function to find the
// distance beween the closest points of
// strip of given size. All points in
// strip[] are sorted accordint to
// y coordinate. They all have an upper
// bound on minimum distance as d.
// Note that this method seems to be
// a O(n^2) method, but it's a O(n)
// method as the inner loop runs at most 6 times
float stripClosest(Point strip[], int size, float d)
{
    float min = d; // Initialize the minimum distance as d

    qsort(strip, size, sizeof(Point), compareY);

    // Pick all points one by one and try the next points till the difference
    // between y coordinates is smaller than d.
    // This is a proven fact that this loop runs at most 6 times
    for (int i = 0; i < size; ++i)
        for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
            if (dist(strip[i],strip[j]) < min)
                min = dist(strip[i], strip[j]);

    return min;
}

// A recursive function to find the
// smallest distance. The array P contains
// all points sorted according to x coordinate
float closestUtil(Point P[], int n)
{
    // If there are 2 or 3 points, then use brute force
    if (n <= 3)
        return bruteForce(P, n);

    // Find the middle point
    int mid = n/2;
    Point midPoint = P[mid];

    // Consider the vertical line passing
    // through the middle point calculate
    // the smallest distance dl on left
    // of middle point and dr on right side
    float dl = closestUtil(P, mid);
    float dr = closestUtil(P + mid, n - mid);

    // Find the smaller of two distances
    float d = min(dl, dr);

    // Build an array strip[] that contains
    // points close (closer than d)
    // to the line passing through the middle point
    Point strip[n];
    int j = 0;
    for (int i = 0; i < n; i++)
        if (abs(P[i].x - midPoint.x) < d)
            strip[j] = P[i], j++;

    // Find the closest points in strip.
    // Return the minimum of d and closest
    // distance is strip[]
    return min(d, stripClosest(strip, j, d) );
}

// The main function that finds the smallest distance
// This method mainly uses closestUtil()
float closest(Point P[], int n)
{
    qsort(P, n, sizeof(Point), compareX);

    // Use recursive function closestUtil()
    // to find the smallest distance
    return closestUtil(P, n);
}

// Driver code
int main()
{

    int n;
    fin>>n;
    Point P[n];
    for(int i=0;i<n;i++)
        fin>>P[i].x>>P[i].y;
    fout <<closest(P, n);
    return 0;
}