#include <vector>
#include <queue>
#include <cmath>
#include <algorithm>
#include <cstdio>
using namespace std;
template <typename coord_type>
struct point_data_t{
coord_type x,y;
point_data_t(){
x = y = 0;
}
point_data_t(coord_type x,coord_type y){
this->x = x;
this->y = y;
}
coord_type dist(point_data_t &other)const{
return sqrt((x - other.x) * (x - other.x) + (y - other.y) * (y - other.y));
}
bool operator < (const point_data_t &other)const{
if(x != other.x){
return x < other.x;
}
return y < other.y;
}
bool operator == (const point_data_t &other)const{
return x == other.x && y == other.y;
}
bool operator != (const point_data_t &other)const{
return x != other.x || y != other.y;
}
};
///point_type should be a data structure that supports all point_data_t methods and has two variables x and y which will be used as coordinates
template <typename point_type>
class KDTree{
private:
KDTree *leftson,*rightson;
point_type P;
public:
KDTree(){
leftson = rightson = NULL;
P = point_type(0,0);
}
~KDTree(){
if(leftson != NULL){
delete leftson;
}
if(rightson != NULL){
delete rightson;
}
}
KDTree(KDTree *leftson,KDTree *rightson,point_type P){
this->leftson = leftson;
this->rightson = rightson;
this->P = P;
}
KDTree(std::vector<point_type> &points);
void build(std::vector<point_type> &points,int left,int right);
point_type find_nearest_neighbor(point_type &P,float &best_dist_so_far);
};
template<typename point_type>
void KDTree<point_type>::build(std::vector<point_type> &points,int left,int right){///[left,right);std::swaps x and y of points to prevent two compare functions;changes the order of parameter points
int mid = (left + right) / 2;
nth_element(points.begin() + left,points.begin() + mid,points.begin() + right);
this->P = points[mid];
for(int i = left;i < right;i++){
std::swap(points[i].x,points[i].y);
}
if(left < mid){
this->leftson = new KDTree;
this->leftson->build(points,left,mid);
}
if(mid + 1 < right){
this->rightson = new KDTree;
this->rightson->build(points,mid + 1,right);
}
for(int i = left;i < right;i++){
std::swap(points[i].x,points[i].y);
}
}
template<typename point_type>
KDTree<point_type>::KDTree(std::vector<point_type> &points) {
this->build(points,0,(int)points.size());
}
///best_dist_so_far contains the actual distance;leaves P uneffected,returns the closeste point
template<typename point_type>
point_type KDTree<point_type>::find_nearest_neighbor(point_type &P,float &best_dist_so_far){///P has the coordonates in order for this depth,returns the answer with coordinates std::swaped depending on the depth
point_type best_subtree_point = this->P;
if(P != this->P && best_dist_so_far > P.dist(this->P)){
best_dist_so_far = P.dist(this->P);
best_subtree_point = this->P;
}
if(leftson == NULL && rightson == NULL){
return best_subtree_point;
}
if(leftson == NULL){
std::swap(P.x,P.y);
point_type rightson_ans = this->rightson->find_nearest_neighbor(P,best_dist_so_far);
std::swap(P.x,P.y);
std::swap(rightson_ans.x,rightson_ans.y);
if(P.dist(best_subtree_point) > P.dist(rightson_ans)){
best_subtree_point = rightson_ans;
}
return best_subtree_point;
}
if(rightson == NULL){
std::swap(P.x,P.y);
point_type leftson_ans = this->leftson->find_nearest_neighbor(P,best_dist_so_far);
std::swap(P.x,P.y);
std::swap(leftson_ans.x,leftson_ans.y);
if(P.dist(best_subtree_point) > P.dist(leftson_ans)){
best_subtree_point = leftson_ans;
}
return best_subtree_point;
}
if(P < this->P){
std::swap(P.x,P.y);
point_type leftson_ans = this->leftson->find_nearest_neighbor(P,best_dist_so_far);
std::swap(P.x,P.y);
std::swap(leftson_ans.x,leftson_ans.y);
if(P.dist(best_subtree_point) > P.dist(leftson_ans)){
best_subtree_point = leftson_ans;
}
if(P.x + best_dist_so_far >= this->P.x){
std::swap(P.x,P.y);
point_type rightson_ans = this->rightson->find_nearest_neighbor(P,best_dist_so_far);
std::swap(P.x,P.y);
std::swap(rightson_ans.x,rightson_ans.y);
if(P.dist(best_subtree_point) > P.dist(rightson_ans)){
best_subtree_point = rightson_ans;
}
}
return best_subtree_point;
}
else{
std::swap(P.x,P.y);
point_type rightson_ans = this->rightson->find_nearest_neighbor(P,best_dist_so_far);
std::swap(P.x,P.y);
std::swap(rightson_ans.x,rightson_ans.y);
if(P.dist(best_subtree_point) > P.dist(rightson_ans)){
best_subtree_point = rightson_ans;
}
if(P.x - best_dist_so_far <= this->P.x){
std::swap(P.x,P.y);
point_type leftson_ans = this->leftson->find_nearest_neighbor(P,best_dist_so_far);
std::swap(P.x,P.y);
std::swap(leftson_ans.x,leftson_ans.y);
if(P.dist(best_subtree_point) > P.dist(leftson_ans)){
best_subtree_point = leftson_ans;
}
}
return best_subtree_point;
}
}
FILE *f = fopen("cmap.in","r");
FILE *g = fopen("cmap.out","w");
int N;
vector<point_data_t<int> > V;
int main(){
fscanf(f,"%d",&N);
V.resize(N);
for(int i = 0;i < N;i++){
fscanf(f,"%d %d",&V[i].x,&V[i].y);
}
KDTree<point_data_t<int> > *T = new KDTree<point_data_t<int> > (V);
float ans = 5e18;
for(auto &it:V){
T->find_nearest_neighbor(it,ans);
}
fprintf(g,"%.6f",ans);
fclose(f);
fclose(g);
return 0;
}