Cod sursa(job #1818144)

Utilizator radu.leonardoThe Doctor radu.leonardo Data 28 noiembrie 2016 20:59:42
Problema Cele mai apropiate puncte din plan Scor 90
Compilator cpp Status done
Runda Arhiva educationala Marime 1.96 kb
#include <cmath>
#include <algorithm>
#include <iomanip>
#include <fstream>

#define INF 2000000000
#define MAXN 100010
#define BUFF_SIZE 1048576
using namespace std;
struct punct{int x,y;}p[MAXN];
int i,j,n;
long long sol;
class InParser {

private:
    FILE *fin;
    char *buff;
    int sp;

    char read_ch() {
        ++sp;
        if (sp == BUFF_SIZE) {
            sp = 0;
            fread(buff, 1, BUFF_SIZE, fin);
        }
        return buff[sp];
    }

public:
    InParser(const char* nume) {
        fin = fopen(nume, "r");
        buff = new char[BUFF_SIZE]();
        sp = BUFF_SIZE-1;
    }

    InParser& operator >> (int &n) {
        char c;
        while (!isdigit(c = read_ch()) && c != '-');
        int sgn = 1;
        if (c == '-') {
            n = 0;
            sgn = -1;
        } else {
            n = c - '0';
        }
        while (isdigit(c = read_ch())) {
            n = 10 * n + c - '0';
        }
        n *= sgn;
        return *this;
    }

    InParser& operator >> (long long &n) {
        char c;
        n = 0;
        while (!isdigit(c = read_ch()) && c != '-');
        long long sgn = 1;
        if (c == '-') {
            n = 0;
            sgn = -1;
        } else {
            n = c - '0';
        }
        while (isdigit(c = read_ch())) {
            n = 10 * n + c - '0';
        }
        n *= sgn;
        return *this;
    }
};
inline long long dist(punct a,punct b) {return (long long)((long long)(a.x-b.x)*(a.x-b.x)+(long long)(a.y-b.y)*(a.y-b.y));}
struct cmp{inline bool operator ()(punct a,punct b){return a.x<b.x;}};

int main()
{
    InParser  f("cmap.in");
    ofstream g("cmap.out");
    f>>n;
    for(i=0;i<n;i++)
    f>>p[i].x>>p[i].y;
    sort(p,p+n,cmp());
    sol=(1LL<<61);
    for(i=0;i<n;i++)
    for(j=i+1;j<=i+2 and j<n;j++)   if(dist(p[i],p[j])<sol) sol=dist(p[i],p[j]);
    g<<setprecision(6)<<fixed;
    g<<sqrt((double)sol)<<"\n";
}