Pagini recente » Cod sursa (job #1331760) | Cod sursa (job #2821909) | Cod sursa (job #2103768) | Cod sursa (job #1974853) | Cod sursa (job #1350871)
#include <fstream>
#include <vector>
#include <algorithm>
#include <functional>
using namespace std;
template<class DataType>
class Rmq {
function<bool(DataType, DataType)> comp;
vector<DataType> data;
vector< vector<size_t> > rmq;
vector<size_t> lg;
void build() {
lg.resize(data.size() + 1);
for (size_t i = 2; i <= data.size(); i++) {
lg[i] = lg[i >> 1] + 1;
}
size_t rows = lg[data.size()];
rmq.resize(rows + 1, vector<size_t>(data.size() + 1));
for (size_t i = 1; i < data.size(); i++) {
rmq[0][i] = i;
}
for (size_t i = 1; i <= rows; i++) {
for (size_t j = 1; j < data.size() - (1 << i) + 1; j++) {
rmq[i][j] = comp(data[rmq[i - 1][j]], data[rmq[i - 1][j + (1 << (i - 1))]]) ? rmq[i - 1][j] : rmq[i - 1][j + (1 << (i - 1))];
}
}
}
public:
Rmq() {}
Rmq(const vector<DataType>& data_, const function<bool(DataType, DataType)>& comp_) {
data = data_;
comp = comp_;
build();
}
size_t queryIndex(size_t l, size_t r) {
size_t L = lg[r - l + 1];
return comp(data[rmq[L][l]], data[rmq[L][r - (1 << L) + 1]]) ? rmq[L][l] : rmq[L][r - (1 << L) + 1];
}
};
class LCA {
vector< vector<int> > tree;
vector<int> First, nodes, depth, heights;
Rmq<int> rmq;
int k;
void dfs(int v) {
First[v] = ++k;
nodes[k] = v;
heights[k] = depth[v];
for (int& w : tree[v]) {
depth[w] = depth[v] + 1;
dfs(w);
nodes[++k] = v;
heights[k] = depth[v];
}
}
public:
LCA(int n) {
tree.resize(n);
First.resize(n, -1);
depth.resize(n);
nodes.resize(2 * n + 1);
heights = nodes;
k = 0;
}
void build() {
dfs(0);
rmq = Rmq<int>(heights, less<int>());
}
int query(int x, int y) {
x = First[x];
y = First[y];
if (x > y) swap(x, y);
return nodes[rmq.queryIndex(x, y)];
}
void addEdge(const int& x, const int& y) {
tree[x].push_back(y);
}
};
int main()
{
ifstream cin("lca.in");
ofstream cout("lca.out");
int n, m;
cin >> n >> m;
LCA solver(n);
for (int i = 1; i < n; i++) {
int v;
cin >> v;
solver.addEdge(--v, i);
}
solver.build();
for (int i = 0; i < m; i++) {
int a, b;
cin >> a >> b;
cout << solver.query(--a, --b) + 1 << "\n";
}
return 0;
}