Cod sursa(job #1159675)

Utilizator Dddarius95Darius-Florentin Neatu Dddarius95 Data 29 martie 2014 19:45:14
Problema Lowest Common Ancestor Scor 100
Compilator cpp Status done
Runda Arhiva educationala Marime 1.6 kb
// Lowest Common Ancestor - O(NlogN+M)  , memorie O(NlogN)
// LCA(x,y)este nodul de nivel minim intre primele aparitii
// ale nodurilor x si y in reprezentarea Euler a arborelui
#include <fstream>
#include <vector>
#include <bitset>
#define Nmax 100099
#define Emax 200099
#define LgMax 18
using namespace std;
ifstream f("lca.in");
ofstream g("lca.out");


int N,M,E[Emax],L[Nmax],F[Nmax],lg[Emax],RMQ[LgMax][Emax],x,y;
vector < int > G[Nmax];
bitset < Nmax > viz;

void ReadInput()
{
     f>>N>>M;
     for(int i=2;i<=N;++i)
          f>>x , G[x].push_back(i);
}

void DFS(int node,int level)
{
     viz[node]=1;
     E[++E[0]]=node , F[node]=E[0];
     L[node]=level;
     for(vector<int>::iterator it=G[node].begin();it!=G[node].end();++it)
          if(!viz[*it])
               DFS(*it,level+1) , E[++E[0]]=node;
}

void MakeRMQ()
{
     for(int i=2;i<=E[0];++i)lg[i]=lg[i/2]+1;
     for(int j=1;j<=E[0];++j)RMQ[0][j]=E[j];
     for(int i=1; (1<<i)<=E[0];++i)
          for(int j=1;j<=E[0]-(1<<i)+1;++j)
          {
               int x=RMQ[i-1][j] , y=RMQ[i-1][j+(1<<(i-1))];
               if(L[x]<L[y])RMQ[i][j]=x;
                       else RMQ[i][j]=y;
          }
}

int LCA(int x,int y)
{
     int st=F[x] ,dr=F[y];
     if(st>dr)swap(st,dr);
     int log=lg[dr-st+1];
     int x1=RMQ[log][st] , x2=RMQ[log][dr-(1<<log)+1];
     if(L[x1]<L[x2])return x1;
               else return x2;
}
int main()
{
     ReadInput();
     DFS(1,1);
     MakeRMQ();
     for(int i=1;i<=M;++i)
          f>>x>>y , g<<LCA(x,y)<<'\n';
     f.close();g.close();
     return 0;
}