Pagini recente » Istoria paginii utilizator/piro | Istoria paginii utilizator/necro | Diferente pentru utilizator/alexandrupaul intre reviziile 49 si 53 | Diferente pentru utilizator/sorinmocanu intre reviziile 9 si 17 | Diferente pentru utilizator/stefannnnn intre reviziile 9 si 17
Nu exista diferente intre titluri.
Diferente intre continut:
cele 13 reguli fundamentale la a fi un sigma
cele 24 reguli fundamentale la a fi un sigma
<tex> regula sigma 1: sol_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2\cdot a} </tex>
<tex> regula sigma 2: f'(c)=\frac{f(a) - f(b)}{a - b} </tex>
<tex> regula sigma 3: C_n=\frac{1}{n + 1} \cdot \binom{2 \cdot n}{n} </tex>
<tex> regula sigma 14: \zeta(s) = \sum^{\infty}_{1}{n^s} </tex>
<tex> regula sigma 15: \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}</tex>
<tex> regula sigma 16: f(\sum^{n}_{1}{p_i x_i}) \leq \sum^{n}_{1}{p_i \cdot f(x_i)}</tex>
<tex> regula sigma 17: f_n = \frac{(\frac{1 + \sqrt{5}}{2}) ^ n - (\frac{1 - \sqrt{5}}{2}) ^ n}{\sqrt{5}}</tex>
<tex> regula sigma 18: P(|X - \mu| \geq k \sigma) \leq \frac{1}{k^2}</tex>
<tex> regula sigma 19: \sum_{cyc}{x^t(x-y)(x-z) \geq 0}</tex>
<tex> regula sigma 20: a ^ {p - 2} \equiv \frac{1}{a} (\text{mod }p)</tex>
<tex> regula sigma 21: (n - 1)! \equiv -1(\text{mod }n)</tex>
<tex> regula sigma 22: \binom{m}{n} = \prod^{k}_{1}{\binom{m_i}{n_i}} \text{ (mod p)}</tex>
<tex> regula sigma 23: (\sum^{n}_{1}{(a_k + b_k) ^ p})^{\frac{1}{p}} \leq (\sum^{n}_{1}{a_k^p}) ^{\frac{1}{p}} + (\sum^{n}_{1}{b_k^p}) ^{\frac{1}{p}} </tex>
<tex> regula sigma 24: \sum^{n}_{1}{a_i b_i} \leq (\sum^{n}_{1}a_i^p)^{\frac{1}{p}} + (\sum^{n}_{1}b_i^q)^{\frac{1}{q}} </tex>
<tex> regula sigma 25: \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f(c)}{g(c)}</tex>
<tex> regula sigma : </tex>
<tex> regula sigma : </tex>
<tex> regula sigma : </tex>
<tex> regula sigma : </tex>
Nu exista diferente intre securitate.
Topicul de forum nu a fost schimbat.