Diferente pentru utilizator/stefannnnn intre reviziile #8 si #9

Nu exista diferente intre titluri.

Diferente intre continut:

cele 11 reguli fundamentale la a fi un sigma
cele 13 reguli fundamentale la a fi un sigma
<tex> regula sigma 1: sol_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2\cdot a} </tex>
<tex> regula sigma 2: f'(c)=\frac{f(a) - f(b)}{a - b} </tex>
<tex> regula sigma 3: C_n=\frac{1}{n + 1} \cdot \binom{2 \cdot n}{n} </tex>
<tex> regula sigma 7: \frac{2}{\frac{1}{a} + \frac{1}{b}} \leq \sqrt{a \cdot b} \leq \frac{a + b}{2} \leq \sqrt{\frac{a^2 + b^2}{2}}</tex>
<tex> regula sigma 8: \frac{AC}{CD} = \frac{AB}{BD}, \Delta ABC \text{ cu } \angle BAD = \angle DAC  </tex>
<tex> regula sigma 9: \sum^{n}_{0}\binom{n}{i} = 2^n</tex>
<tex> regula sigma 10: AH = 2R \cdot \cos{a}</tex>
<tex> regula sigma 10: AH = 2R \cdot \cos{A}</tex>
<tex> regula sigma 11: A = i + \frac{p}{2} + 1 </tex>
<tex> regula sigma 12: (\sum^{n}_{1}{a_i \cdot b_i}) ^ 2 \leq (\sum^{n}_{1}{a_i ^ 2})\cdot (\sum^{n}_{1}{b_i ^ 2})</tex>
<tex> regula sigma 13: \sum^{n}_{1}{\frac{a_i ^ 2}{b_i}} \geq \frac{ (\sum^{n}_{1}{a_i} ^ 2) }{\sum^{n}_{1}{b_i}}</tex>
 
 
 
<tex> regula sigma 14: \zeta(s) = \sum^{\infty}_{1}{n^s} </tex>
<tex> regula sigma 15: \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}</tex>
<tex> regula sigma 16: f(\sum^{n}_{1}{p_i x_i}) \leq \sum^{n}_{1}{p_i \cdot f(x_i)}</tex>

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.