Diferente pentru utilizator/stefannnnn intre reviziile #17 si #14

Nu exista diferente intre titluri.

Diferente intre continut:

cele 24 reguli fundamentale la a fi un sigma
cele 23 reguli fundamentale la a fi un sigma
<tex> regula sigma 1: sol_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2\cdot a} </tex>
<tex> regula sigma 2: f'(c)=\frac{f(a) - f(b)}{a - b} </tex>
<tex> regula sigma 3: C_n=\frac{1}{n + 1} \cdot \binom{2 \cdot n}{n} </tex>
<tex> regula sigma 20: a ^ {p - 2} \equiv \frac{1}{a} (\text{mod }p)</tex>
<tex> regula sigma 21: (n - 1)! \equiv -1(\text{mod }n)</tex>
<tex> regula sigma 22: \binom{m}{n} = \prod^{k}_{1}{\binom{m_i}{n_i}} \text{  (mod p)}</tex>
<tex> regula sigma 23: (\sum^{n}_{1}{(a_k + b_k) ^ p})^{\frac{1}{p}} \leq (\sum^{n}_{1}{a_k^p}) ^{\frac{1}{p}} + (\sum^{n}_{1}{b_k^p}) ^{\frac{1}{p}} </tex>
<tex> regula sigma 24: \sum^{n}_{1}{a_i b_i} \leq (\sum^{n}_{1}a_i^p)^{\frac{1}{p}} + (\sum^{n}_{1}b_i^q)^{\frac{1}{q}} </tex>
<tex> regula sigma 25: \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f(c)}{g(c)}</tex>
<tex> regula sigma : </tex>
<tex> regula sigma : </tex>
<tex> regula sigma : </tex>
<tex> regula sigma : </tex>
<tex> regula sigma 23: (\sum^{n}_{1}{(a_k + b_k) ^ p})^{\frac{1}{p}} \leq (\sum^{n}_{1}{a_k^p}) ^{\frac{1}{p}} + (\sum^{n}_{1}{b_k^p}) ^{\frac{1}{p}} </tex>

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.