Diferente pentru siruri-de-sufixe intre reviziile #45 si #46

Nu exista diferente intre titluri.

Diferente intre continut:

$*a* a b a a b$
$ a b a a b a a b a a b a *a b a*$
Extinzand in acest mod cat mai mult in stanga secventa noastra si apoi extinzand la dreapta prefixul de lungime $L$ (in exemplul nostru prefixul de lungime $3$) al secventei obtinute, gasim cea mai lunga repetitie a unui sir de caractere de lungime $L$ cu proprietatea ca repetitia contine ca subsecventa sirul $X$ (daca repetitia este $(1, L)$ afirmatia anterioara nu este adevarata, dar acesta este un caz trivial). Acum observam ca pentru a identifica toate repetitiile $(K, L)$ cu $L$ fixat din sirul $U$, este suficient sa partitionam sirul in $n/L$ bucati si sa extindem aceste bucati. Remarcam ca daca va fi posibil sa realizam acest lucru pentru ficare bucata in $O(1)$ algoritmul final va avea ordinul de complexitate $O(n/1 + n/2 + n/3 + .. + n/n)$ (fiecare bucata se poate repeta in totalitate sau doar partial in stanga sau in dreapta, iar noi nu vom extinde fiecare bucata separat, ci bucatile adiacente le vom reuni intr-o noua bucata; asadar, daca avem $p$ bucati consecutine de aceeasi dimensiune, vom determina extinderile lor maxime in timp $O(p)$). Dar stim ca sirul $1 + 1/2 + 1/3 + 1/4 + .. + 1/n - ln n$ converge spre o constanta $c$, numita constanta lui $Euler$, si $c < 1$; de aici tragem concluzia ca $O(n/1 + n/2 + n/3 + .. + n/n)$ = $O(log n)$, deci algoritmul, in cazul in care extinderile maxime pot fi calculate usor, ar avea ordinul de complexitate $O(n log n)$. Acum intervin in rezolvarea noastra arborii de sufixe. Pentru a determina cu cat putem extinde cel mai mult subsecventa $U[i..j]$ a sirului $U$ la dreapta, practic ne intereseaza cel mai lung prefix comun al subsecventei $U[i..j]$ si al subsecventei $U[j+1..n]$. Pentru a extinde cat mai mult la stanga este suficient sa inversam sirul $U$ si ajungem sa rezolvam aceeasi problema. Am vazut ca problema celui mai lung prefix comun a doua secvente se rezolva in timp $O(1)$ cu ajutorul sirurilor de sufixe. Astfel, avem nevoie de crearea sirului de sufixe, etapa pe care o rezolvam intr-un timp de ordinul $O(n log n)$ si apoi de aplicarea algoritmului explicat anterior care are complexitatea $O(n log n)$. In concluzie, algoritmul prezent are complexitatea totala $O(n log n)$.
Extinzand in acest mod cat mai mult in stanga secventa noastra si apoi extinzand la dreapta prefixul de lungime $L$ (in exemplul nostru prefixul de lungime $3$) al secventei obtinute, gasim cea mai lunga repetitie a unui sir de caractere de lungime $L$ cu proprietatea ca repetitia contine ca subsecventa sirul $X$ (daca repetitia este $(1, L)$ afirmatia anterioara nu este adevarata, dar acesta este un caz trivial). Acum observam ca pentru a identifica toate repetitiile $(K, L)$ cu $L$ fixat din sirul $U$, este suficient sa partitionam sirul in $n/L$ bucati si sa extindem aceste bucati. Remarcam ca daca va fi posibil sa realizam acest lucru pentru ficare bucata in $O(1)$ algoritmul final va avea ordinul de complexitate $O(n/1 + n/2 + n/3 + .. + n/n)$ (fiecare bucata se poate repeta in totalitate sau doar partial in stanga sau in dreapta, iar noi nu vom extinde fiecare bucata separat, ci bucatile adiacente le vom reuni intr-o noua bucata; asadar, daca avem $p$ bucati consecutine de aceeasi dimensiune, vom determina extinderile lor maxime in timp $O(p)$). Dar stim ca sirul $1 + 1/2 + 1/3 + 1/4 + .. + 1/n - ln n$ converge spre o constanta $c$, numita constanta lui $Euler$, si $c < 1$; de aici tragem concluzia ca $O(n/1 + n/2 + n/3 + .. + n/n)$ = $O(n log n)$, deci algoritmul, in cazul in care extinderile maxime pot fi calculate usor, ar avea ordinul de complexitate $O(n log n)$. Acum intervin in rezolvarea noastra arborii de sufixe. Pentru a determina cu cat putem extinde cel mai mult subsecventa $U[i..j]$ a sirului $U$ la dreapta, practic ne intereseaza cel mai lung prefix comun al subsecventei $U[i..j]$ si al subsecventei $U[j+1..n]$. Pentru a extinde cat mai mult la stanga este suficient sa inversam sirul $U$ si ajungem sa rezolvam aceeasi problema. Am vazut ca problema celui mai lung prefix comun a doua secvente se rezolva in timp $O(1)$ cu ajutorul sirurilor de sufixe. Astfel, avem nevoie de crearea sirului de sufixe, etapa pe care o rezolvam intr-un timp de ordinul $O(n log n)$ si apoi de aplicarea algoritmului explicat anterior care are complexitatea $O(n log n)$. In concluzie, algoritmul prezent are complexitatea totala $O(n log n)$.
h3. *Problema 10* (ACM SEER 2004)

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.