Diferente pentru probleme-cu-secvente intre reviziile #46 si #56

Diferente intre titluri:

Probleme cu secvențe
Probleme cu secvențe important

Diferente intre continut:

Acest articol prezintă o serie de probleme înrudite cu problema subsecvenţei de sumă maximă, însoţite de rezolvări eficiente. Problemele prezentate pot apărea oricând ca subprobleme în concursurile de programare, studierea lor mărind în mod util bagajul de cunoştinţe al unui elev pasionat de algoritmică.
h2(#problema-1). Problema 1: Subsecvenţa de sumă maximă
h2(#problema-1). Problema 1: 'Subsecvenţa de sumă maximă':problema/ssm
bq. Se dă un şir de $N$ numere întregi $(a{~1~}, a{~2~}, ..., a{~N~})$. Să se determine o subsecvenţă $(a{~i~}, a{~i+1~}, ..., a{~j~})$ care să aibă suma maximă.
Prima rezolvare care ne vine în minte are complexitatea $O(N^3^)$ şi constă în determinarea sumei fiecărei subsecvenţe posibile şi reţinerea maximului acestor sume. Este evident că anumite sume parţiale sunt calculate de mai multe ori.
Putem reduce complexitatea la $O(N^2^)$ ţinând cont de faptul că suma subsecvenţei $a[i..j]$ este egală cu suma subsecvenţei $a[i..j-1]$, la care se adună $a[j]$. Păstrăm într-un şir $sum[i]$ suma elementelor din subsecvenţa $a[1..i]$. Pentru a determina suma elementelor din subsecvenţa $a[i..j]$ facem diferenţa: $sum[i] - sum[j-1]$.
Putem reduce complexitatea la $O(N^2^)$ ţinând cont de faptul că suma subsecvenţei $a[j..i]$ este egală cu suma subsecvenţei $a[j..i-1]$, la care se adună $a[i]$. Păstrăm într-un şir $sum[i]$ suma elementelor din subsecvenţa $a[1..i]$. Pentru a determina suma elementelor din subsecvenţa $a[j..i]$ facem diferenţa: $sum[i] - sum[j-1]$.
Ideea poate fi rafinată calculând pentru fiecare indice $i$ numărul $best[i]$, reprezentând subsecvenţa de sumă maximă cu capătul drept în $i$. Este uşor de observat că $best[i] = max(sum[i] - sum[j-1])$, unde $j$ ia valori de la $1$ la $i$. Relaţia anterioară se mai poate scrie: $best[i] = sum[i] - min(sum[j-1])$. Obţinem astfel un algoritm liniar care ne determină subsecvenţa de sumă maximă cerută.
}
==
h2(#problema-2). Problema 2: 'Maximum Sum':http://icpcres.ecs.baylor.edu/onlinejudge/index.php?option=com_onlinejudge&Itemid=8&category=3&page=show_problem&problem=44 (UVa)
h2(#problema-2). Problema 2: 'Maximum Sum':http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&page=show_problem&problem=44 (UVa)
bq. Se dă o matrice de dimensiuni $N x N$ cu elemente întregi. Se cere determinarea unei submatrici a cărei elemente au suma maximă.
O altă idee ar fi ca pentru fiecare pereche $(i{~1~}, i{~2~})$ fixată să determinăm perechea optimă $(j{~1~}, j{~2~})$. Dacă avem liniile $i{~1~}$ şi $i{~2~}$ fixate atunci problema se transformă din una bidimensională în una unidimensională. Astfel pentru fiecare coloană $j$ vom considera $b[j]$ ca sumă a elementelor $a[i][j]$ cu proprietatea că $i{~1~} ≤ i ≤ i{~2~}$. În exemplul nostru, dacă $i{~1~} = 2$ şi $i{~2~} = 3$, atunci avem: $b{~1~} = 9 + (-4)$, $b{~2~} = 2 + 1$, $b{~3~} = (-6) + (-4)$ şi $b{~4~} = 2 + 1$. Pentru a rezolva problema unidimensională folosim unul din algoritmii liniari prezentaţi mai sus, astfel obţinându-se un algoritm de complexitate totală $O(N^3^)$. Acest truc de a fixa două linii pentru a transforma problema în una unidimensională este util în multe probleme pe matrice sau cu puncte în plan.
Cel mai bun algoritm cunoscut pentru această problemă are complexitatea <tex>O(N^{3\sqrt{\frac{\log \log N}{\log N}}})</tex> şi este mai mult un algoritm teoretic decât unul practic, uşor implementabil. Pentru detalii puteti consulta lucrarea [3].
Cel mai bun algoritm cunoscut pentru această problemă are complexitatea <tex>O(N^{3}\sqrt{\frac{\log \log N}{\log N}})</tex> şi este mai mult un algoritm teoretic decât unul practic, uşor implementabil. Pentru detalii puteti consulta lucrarea [3].
h2(#problema-3). Problema 3: 'SequenceQuery':problema/sequencequery (Bursele Agora 2006)
h3. Rezolvare:
Construim întâi şirul sumelor parţiale. Pentru oricare două elemente $sum[i]$ şi $sum[j]$ cu $(i != j)$ modulul sumei unei subsecvenţe din şir va fi $|sum[i] - sum[j]|$. Dacă $i < j$, atunci secvenţa va fi $a[i+1..j]$, iar dacă $j < i$, atunci secvenţa va fi $a[j+1 .. i]$. Astfel, pentru a găsi subsecvenţa de modul minim trebuie, de fapt, să găsim perechea de indici $i$ şi $j$ astfel ca $|sum[i] - sum[j]|$ să fie minim. Sortând şirul sumelor parţiale şi luând o pereche de indici $i < j$, atunci $sum[i] < sum[j]$, iar $|sum[j] - sum[i]| = sum[j] - sum[i]$. Pentru a găsi perechea $(i, j)$ pentru care $i < j$ şi $sum[j] - sum[i]$ este minim, trebuie ca $i$ să fie egal cu $j + 1$. Astfel obţinem un algoritm de complexitate $O(N * log N)$.
Construim întâi şirul sumelor parţiale. Pentru oricare două elemente $sum[i]$ şi $sum[j]$ cu $(i != j)$ modulul sumei unei subsecvenţe din şir va fi $|sum[i] - sum[j]|$. Dacă $i < j$, atunci secvenţa va fi $a[i+1..j]$, iar dacă $j < i$, atunci secvenţa va fi $a[j+1 .. i]$.
 
Astfel, pentru a găsi subsecvenţa de modul minim trebuie, de fapt, să găsim perechea de indici $i$ şi $j$ astfel ca $|sum[i] - sum[j]|$ să fie minim. Sortând şirul sumelor parţiale şi luând o pereche de indici $i < j$, atunci $sum[i] < sum[j]$, iar $|sum[j] - sum[i]| = sum[j] - sum[i]$. Pentru a găsi perechea $(i, j)$ pentru care $i < j$ şi $sum[j] - sum[i]$ este minim, trebuie ca $i$ să fie egal cu $j + 1$. Astfel obţinem un algoritm de complexitate $O(N * log N)$.
Să vedem cum merge pe exemplul prezentat:
h3. Rezolvare:
Suma _xor_ a două numere este de fapt adunare binară fără transport, fapt care o face similară operaţiei _modulo_. Problema e asemănătoare cu cea a subsecvenţei de modul maxim. Vom obţine toate sumele _xor_ parţiale şi pentru a vedea pentru $sum[i]$ perechea optimă cu care crează o sumă cât mai mare trebuie să găsim acea sumă $sum[j]$ astfel că fiecare bit al lui $sum[i]$ să fie diferit de fiecare bit al lui $sum[j]$, dacă acest lucru este posibil. Pentru a face această căutare cât mai eficientă, putem menţine sumele $sum[i]$ ca şiruri de caractere $0$ sau $1$ într-un _trie_ [5]. Structura de trie pentru cazul când alfabetul are dimensiunea $2$ este identică cu cea de heap. Această soluţie are complexitatea $O(N * log C)$.
Suma _xor_ a două numere este de fapt adunare binară fără transport, fapt care o face similară operaţiei _modulo_. Problema e asemănătoare cu cea a subsecvenţei de modul minim. Vom obţine toate sumele _xor_ parţiale şi pentru a vedea pentru $sum[i]$ perechea optimă cu care crează o sumă cât mai mare trebuie să găsim acea sumă $sum[j]$ astfel că fiecare bit al lui $sum[i]$ să fie diferit de fiecare bit al lui $sum[j]$, dacă acest lucru este posibil. Pentru a face această căutare cât mai eficientă, putem menţine sumele $sum[i]$ ca şiruri de caractere $0$ sau $1$ într-un _trie_ [5]. Structura de trie pentru cazul când alfabetul are dimensiunea $2$ este identică cu cea de heap. Această soluţie are complexitatea $O(N * log C)$.
h2(#probleme-propuse). Probleme propuse
# Takaoka T. - '_Efficient Algorithms for the Maximum Subarray Problem by Distance Matrix Multiplication_':http://www.cosc.canterbury.ac.nz/tad.takaoka/cats02.pdf
# Kuan Yu Chen, Kun Mao Chao - '_On the Range Maximum-Sum Segment Query_':http://www.csie.ntu.edu.tw/~kmchao/papers/2007_DAM_RMSQ.pdf
# Yaw Ling Liu, Tao Jiang, Kun Mao Chao - '_Efficient Algorithms for Locating the Length-Constrained Heaviest Segments, with Applications to Biomolecolar Sequence Analysis_':http://www.csie.ntu.edu.tw/~kmchao/seq2003/mslc.pdf
# T. H. Cormen, C. E. Leiserson, R. R. Rivest - '_Introducere in Algoritmi_':http://zhuzeyuan.hp.infoseek.co.jp/ita/toc.htm
 
h2. Discuţii pe forum
# T. H. Cormen, C. E. Leiserson, R. R. Rivest - '_Introducere in Algoritmi_':http://zhuzeyuan.hp.infoseek.co.jp/ita/toc.htm

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.