Pagini recente » Diferente pentru utilizator/ikogames intre reviziile 13 si 14 | Atasamentele paginii test_concurs | Sandbox | Monitorul de evaluare | Diferente pentru probleme-cu-puncte-laticiale intre reviziile 11 si 12
Nu exista diferente intre titluri.
Diferente intre continut:
suma $L$ de la $1$ la $N-1$ de $(N–L) × (N–L) × L =$ suma cu $L$ de la $1$ la $N–1$ de $LN^2^–2 NL^2^ + L^3^ = N^2^ ×$ suma $L$ de la $1$ la $N-1-2N$ suma $L$ de la $1$ la $N–1$ de $L^2^ +$ suma de $L$ de la $1$ la $N–1$ de $L^3^ = N^2^ × N(N-1)/2-2N n(n-1)(2n-1)/6 + [n(n-1)/2]^2^$.
<tex>
\[ \sum_{L=2}^N {(N-L+1)(N-L+1)(L-1)} \] =
</tex>
<tex>
= \[\sum_{L=1}^{N-1} {(N-1)(N-1)L} \] =
</tex>
<tex>
= \[\sum_{L=1}^{N-1} {LN^2 - 2NL^2 + L^3}\] =
</tex>
<tex>
= \[N^2\sum_{L=1}^{N-1} {L} - 2N\sum_{L=1}^{N-1} {L^2} + \sum_{L=1}^{N-1} {L^3} \] =
</tex>
<tex>
= \[n^2\fraq {N(N-1)}{2} - 2n\fraq{N(N-1)(2N-1)}{6} + \left[\fraq{N(N-1)}{2}\rigt]^2 .\]
\begin{array} {lcl} \[ \sum_{L=2}^N {(N-L+1)(N-L+1)(L-1)} \] & = & \[\sum_{L=1}^{N-1} {(N-1)(N-1)L} \] \\ & = & \[\sum_{L=1}^{N-1} {LN^2 - 2NL^2 + L^3}\] \\ & = & \[N^2\sum_{L=1}^{N-1} {L} - 2N\sum_{L=1}^{N-1} {L^2} + \sum_{L=1}^{N-1} {L^3} \] \\ & = & \[n^2\fraq {N(N-1)}{2} - 2n\fraq{N(N-1)(2N-1)}{6} + \left[\fraq{N(N-1)}{2}\rigt]^2 .\] \end{array}
</tex>
Am folosit formulele cunoscute din manualul de clasa a 10-a:
Nu exista diferente intre securitate.
Topicul de forum nu a fost schimbat.