Pagini recente » Istoria paginii utilizator/mozoru | Monitorul de evaluare | Profil LuciB | Istoria paginii utilizator/sanducodrin | Diferente pentru problema/cuantictiori intre reviziile 27 si 26
Nu exista diferente intre titluri.
Diferente intre continut:
== include(page="template/taskheader" task_id="cuantictiori") ==
O progresie geometrică de lungime <tex>k</tex> cu raţia <tex>r</tex> este un şir de numere naturale <tex>p(1),\ p(2),\ ... ,\ p(k)</tex> pentru care se respectă relaţia : <tex>p(i)\ =\ p(i-1)\ *\ r,\ 2 \le i \le k</tex>.
O progresie geometrică de lungime <tex>k</tex> cu raţia <tex>r</tex> este un şir de numere naturale <tex>p(1),\ p(2),\ ...,\ p(k)</tex> pentru care se respectă relaţia : <tex>p(i)\ =\ p(i-1)\ *\ r,\ 2 \le i \le k</tex>.
Se asigură că se poate demonstra că numărul de progresii geometrice de lungime <tex>k</tex> care au prima valoare egală cu <tex>N</tex> este egal cu cel mai mare număr natural <tex>X</tex> cu proprietatea că <tex>X^k</tex> este divizor al lui <tex>N</tex>.
O progresie cuantică de lungime <tex>k</tex> cu raţia <tex>q</tex> este un şir de numere naturale <tex>p(1),\ p(2),\ ... ,\ p(k)</tex> pentru care se respectă relaţia : <tex>p(i)\ =\ p(i-1)\ ^{q},\ 2 \le i \le k</tex>.
O progresie cuantică de lungime <tex>k</tex> cu raţia <tex>q</tex> este un şir de numere naturale <tex>p(1),\ p(2),\ ...,\ p(k)</tex> pentru care se respectă relaţia : <tex>p(i)\ =\ p(i-1)\ ^{q},\ 2 \le i \le k</tex>.
Se defineste o $progresie geometrica K$ ca fiind un sir strict crescator a de lungime K cu proprietatea ca exista o ratie q in (Q intersectat cu (1,2])) astfel incat ai sa fie egal cu ai-1*q pentru orice 2<=i<=K
Nu exista diferente intre securitate.
Topicul de forum nu a fost schimbat.