Pagini recente » Monitorul de evaluare | winter-challenge-2020/solutii/beyond | Monitorul de evaluare | Concursuri Virtuale | Diferente pentru notiuni-de-geometrie-si-aplicatii intre reviziile 43 si 42
Nu exista diferente intre titluri.
Diferente intre continut:
x_3 & y_3 & 1\end{array} \right|
</tex>
pentru $st[vf-1] = (x{~1~}.y{~1~}) , st[vf]= (x{~2~},y{~3~}), P(x{~3~},y{~3~})$. Daca $D$ este negativ atunci inseamna ca unghiul cu originea in $st[vf]$ face o intoarcere la dreapta si trebuie scos din stiva. Repetam procedeul pana cand ramanem cu un singur punct in stiva sau pana cand intalnim un $D >= 0$ dupa care adaugam punctul in stiva. Dupa ce am terminat e posibil ca poligonul nostru inca sa fie convex deoarece nu am verificat unghiul care are originea in $st[vf]$, asa ca il vom calcula pe $D$ pentru punctele $st[vf-1],st[vf],st[ 1 ]$ si vom scoate punctul din varf atata timp cat $D$ va fi negativ. Punctele ramase reprezinta infasuratoarea convexa a setului de puncte primite la intrare.
*devilkind*: E posibil sa nu fi inteles eu bine, dar la faza cand y/x e 0 cred ca trebui sa pui INF sau -INF in functie de semnul lui y. nush daca merge doar cu INF.
*Feedback (Stefan):* Articolul trebuie imbracat intr-o forma mai prezentabila. Nu trebuie sa ramana doar o lista de formule si schelete de probleme. De asemenea, trebuie compactat si eliminate spatiile mari care il fac greu de citit.
*TODO:* Adaugati si centru de greutate a unui poligon si eventual explicati de ce merge formula de mai sus pt aria unui poligon concav.
Nu exista diferente intre securitate.
Topicul de forum nu a fost schimbat.