Diferente pentru minimal-enclosing-circle intre reviziile #35 si #36

Nu exista diferente intre titluri.

Diferente intre continut:

Algoritmul descris are complexitate {$O(N^3^)$} pentru generarea cercurilor si inca {$O(N)$} pentru fiecare cerc pentru verificare, in total avand {$O(N^4^)$}.
h2. Algoritm {$O(N^2^)$} !>minimum-enclosing-circle?schema.gif!
h2. Algoritm {$O(N^2^)$} !>minimal-enclosing-circle?schema.gif!
Algoritmul acesta se bazeaza pe aceeasi observatii ca mai sus. Se porneste de la un cerc mare care sigur cuprinde toate punctele si se micsoreaza la fiecare pas raza cercului cat mai mult posibil.
Vom demonstra in continuare ca daca punctul {$P$} se afla in exteriorul cercului {$C{~I~}$}, atunci el trebuie sa fie pe circumferinta cercului {$C{~I ∪ {P}~}$}.
* {!>minimum-enclosing-circle?figura.png 40%!} Dandu-se doua cercuri de raza {$R{~1~}$} si {$R{~2~}$}, avand {$R{~1~} < R{~2~}$}, atunci intersectia cercului de raza {$R{~2~}$} cu interiorul cercului de raza {$R{~1~}$} formeaza un arc de cerc de lungime mai mica decat {$&pi;$} (cel albastru in poza alaturata). Daca arcul de cerc ar avea o lungime mai mare ca {$&pi;$} atunci acesta ar trebui sa contina 2 puncte diametral opuse, aflate la o distanta de {$2R{~2~}$}, insa in cercul de raza {$R{~1~}$} cea mai mare distanta intre 2 puncte din interiorul sau poate fi maxim {$2R{~1~}$}. Cum {$R{~1~} < R{~2~}$}, acest lucru este imposibil.
* {!>minimal-enclosing-circle?figura.png 40%!} Dandu-se doua cercuri de raza {$R{~1~}$} si {$R{~2~}$}, avand {$R{~1~} < R{~2~}$}, atunci intersectia cercului de raza {$R{~2~}$} cu interiorul cercului de raza {$R{~1~}$} formeaza un arc de cerc de lungime mai mica decat {$&pi;$} (cel albastru in poza alaturata). Daca arcul de cerc ar avea o lungime mai mare ca {$&pi;$} atunci acesta ar trebui sa contina 2 puncte diametral opuse, aflate la o distanta de {$2R{~2~}$}, insa in cercul de raza {$R{~1~}$} cea mai mare distanta intre 2 puncte din interiorul sau poate fi maxim {$2R{~1~}$}. Cum {$R{~1~} < R{~2~}$}, acest lucru este imposibil.
* Presupunem prin reducere la absurd ca {$P$} nu apartine circumferintei cercului {$C{~I &#8746; {P}~}$}. Este usor de vazut ca raza cercului {$C{~I~}$} este mai mica ca cea a cercului {$C{~I &#8746; {P}~}$}, deoarece {$C{~I &#8746; {P}~}$} cuprinde un punct care nu este cuprins de {$C{~I~}$}. Daca notam cu {$R{~1~}$} raza cercului {$C{~I~}$} si cu {$R{~2~}$} raza cercului {$C{~I &#8746; {P}~}$}, atunci intersectia cercului {$C{~I &#8746; {P}~}$} cu interiorul cercului {$C{~I~}$} este un arc de cerc de lungime mai mica ca {$&pi;$}.
* Datorita faptului ca {$P$} nu apartine circumferintei cercului {$C{~I &#8746; {P}~}$}, punctele care definesc cercul {$C{~I &#8746; {P}~}$} se afla printre punctele din setul {$I$}. Cum toate aceste puncte se afla in interiorul cercului {$C{~I~}$} si intersectia cercului {$C{~I &#8746; {P}~}$} cu interiorul cercului {$C{~I~}$} este un arc de cerc de lungime mai mica decat {$&pi;$}, punctele care determina cercul {$C{~I &#8746; {P}~}$} trebuie sa se afle pe acest arc de cerc. Astfel avem cel putin 2 puncte consecutive pe circumferinta cercului {$C{~I &#8746; {P}~}$} care formeaza un arc de cerc de lungime mai mare {$&pi;$} (cel albastru in rosu alaturata).
* Acest lucru intra in contradictie cu faptul ca cercul are raza minima. Astfel {$P$} trebuie sa se afle pe circumferinta cercului {$C{~I &#8746; {P}~}$}.

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.