/*
░█████╗░██╗░░░░░███████╗██╗░░██╗░█████╗░███╗░░██╗██████╗░██████╗░██╗░░░██╗██╗███╗░░██╗██╗░░░██╗
██╔══██╗██║░░░░░██╔════╝╚██╗██╔╝██╔══██╗████╗░██║██╔══██╗██╔══██╗██║░░░██║██║████╗░██║██║░░░██║
███████║██║░░░░░█████╗░░░╚███╔╝░███████║██╔██╗██║██║░░██║██████╔╝██║░░░██║██║██╔██╗██║╚██╗░██╔╝
██╔══██║██║░░░░░██╔══╝░░░██╔██╗░██╔══██║██║╚████║██║░░██║██╔══██╗██║░░░██║██║██║╚████║░╚████╔╝░
██║░░██║███████╗███████╗██╔╝╚██╗██║░░██║██║░╚███║██████╔╝██║░░██║╚██████╔╝██║██║░╚███║░░╚██╔╝░░
╚═╝░░╚═╝╚══════╝╚══════╝╚═╝░░╚═╝╚═╝░░╚═╝╚═╝░░╚══╝╚═════╝░╚═╝░░╚═╝░╚═════╝░╚═╝╚═╝░░╚══╝░░░╚═╝░░░
They forged me in fire, they broke me in battle, yet here I rise, Invictus!
*/
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
using namespace std;
constexpr int mod = 1000000007;
// constexpr int mod = 998244353;
/* ========================================================================
-> Local Run Time and Debugging
======================================================================== */
// #define DebugMode
// #define Generator
#if defined(DebugMode) && !defined(Generator)
#include "debug/debug.hpp"
#define dbg(...) std::cerr << __DEBUG_UTIL__::outer << __LINE__ << \
": [", __DEBUG_UTIL__::printer(#__VA_ARGS__, __VA_ARGS__)
#define dbgArr(...) std::cerr << __DEBUG_UTIL__::outer << __LINE__ << \
": [", __DEBUG_UTIL__::printerArr(#__VA_ARGS__, __VA_ARGS__)
#else
#define dbg(...) ((void)0)
#define dbgArr(...) ((void)0)
#endif
/* ========================================================================
-> Policy‑based ordered set shortcut
======================================================================== */
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
/* ========================================================================
-> RNG & custom hash for unordered containers
======================================================================== */
mt19937 rng(static_cast<unsigned int>(chrono::steady_clock::now().time_since_epoch().count()));
struct number_hash {
static uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15ULL;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9ULL;
x = (x ^ (x >> 27)) * 0x94d049bb133111ebULL;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
template<typename T, typename U>
struct pair_hash {
size_t operator()(const pair<T, U>& p) const {
return number_hash{}(p.first ^ (number_hash{}(p.second) << 1));
}
};
/* ========================================================================
-> Functions
======================================================================== */
struct func {
static void FastIO() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
}
static void HighPrecisionOutput() {
cout << fixed << setprecision(17);
}
template <typename Func>
struct y_combinator_result {
Func func;
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return func(*this, std::forward<Args>(args)...);
}
};
//Usage: auto func_name = y_combinator([](auto self, int param1, int param2 ...) -> return_type { code; });
template <typename Func>
static decltype(auto) y_combinator(Func&& func) {
return y_combinator_result<std::decay_t<Func>>{std::forward<Func>(func)};
}
static long long RmyPow(long long a, long long b, long long m = -1) {
assert(b >= 0);
if (m == -1) m = mod;
long long res = 1; a %= m;
for (; b > 0; b >>= 1) {
if (b & 1) res = res * a % m;
a = a * a % m;
}
return res;
}
static long long myPow(long long a, long long b) {
assert(b >= 0);
long long res = 1;
for (; b > 0; b >>= 1) {
if (b & 1) res = res * a;
a *= a;
}
return res;
}
template<typename T>
static T gcd(T a, T b) {
return b ? gcd(b, a % b) : a;
}
static long long lcm(const long long a, const long long b) {
return a / gcd(a, b) * b;
}
template<typename T>
static void makeUnique(std::vector<T>& v) {
std::sort(v.begin(), v.end());
v.erase(std::unique(v.begin(), v.end()), v.end());
}
template<typename T>
static bool hasBit(T x, int bit) {
return ((x >> bit) & 1) != 0;
}
template<typename T>
static int countBits(T x) {
if constexpr (std::is_same_v<T, int>) {
return __builtin_popcount(x);
} else if constexpr (std::is_same_v<T, long long>) {
return __builtin_popcountll(x);
} else {
static_assert(std::is_integral_v<T>, "countBits requires an integral type");
return __builtin_popcountll(static_cast<long long>(x)); // fallback
}
}
template<typename T>
static int highestBit(T x) {
if (x == 0) return -1;
if constexpr (std::is_same_v<T, int>) {
return 31 - __builtin_clz(x);
} else if constexpr (std::is_same_v<T, long long>) {
return 63 - __builtin_clzll(x);
} else {
static_assert(std::is_integral_v<T>, "highestBit requires an integral type");
return 63 - __builtin_clzll(static_cast<long long>(x));
}
}
template<typename T>
static int lowestBit(T x) {
if (x == 0) return -1;
if constexpr (std::is_same_v<T, int>) {
return __builtin_ctz(x);
} else if constexpr (std::is_same_v<T, long long>) {
return __builtin_ctzll(x);
} else {
static_assert(std::is_integral_v<T>, "lowestBit requires an integral type");
return __builtin_ctzll(static_cast<long long>(x));
}
}
template<typename T>
static bool inGrid(T x, T y, T n, T m = -1) {
if (m == -1) m = n;
return (x >= 1 && x <= n && y >= 1 && y <= m);
}
};
void YES() { cout << "YES\n"; } void Yes() { cout << "Yes\n"; } void yes() { cout << "yes\n"; }
void NO () { cout << "NO\n"; } void No () { cout << "No\n"; } void no () { cout << "no\n"; }
/* ========================================================================
-> Defines
======================================================================== */
#define all(x) (x).begin(), (x).end()
#define all1(x) ++(x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rall1(x) (x).rbegin(), --(x).rend()
using ll = long long;
using pii = pair<int, int>;
constexpr pair<int, int> dir4[] = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}};
constexpr pair<int, int> dir8[] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}};
constexpr pair<int, int> dirDiag[] = {{-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
constexpr long long infBig = numeric_limits<long long> :: max() - 23;
constexpr long long infMid = 1e15;
constexpr int inf = numeric_limits<int> :: max() - 23;
constexpr int infSmall = 1e9;
/* ========================================================================
-> Templates Start
======================================================================== */
template<typename A>
struct SegmentTree {
struct TreeNode {
A val;
};
int N;
vector<TreeNode> array, tree, lazy;
vector<bool> lazyStatus;
SegmentTree(int n) {
reset(n);
}
void reset(int n) {
N = n;
array.assign(N + 1, defaultTreeNode());
tree .assign(4 * (N + 1), defaultTreeNode());
lazy .assign(4 * (N + 1), defaultTreeNode());
lazyStatus.assign(4 * (N + 1), false);
}
void build(int start, int end, int operation = 1) {
buildX(1, start, end, operation, 1);
}
void update(int start, int end, TreeNode value, int operation = 1) {
updateX(1, 1, N, start, end, value, operation, 1);
}
TreeNode getWithExcludedIndices(int start, int end, vector<int> excluded, int operation = 1) {
excluded.erase(remove_if(excluded.begin(), excluded.end(),
[&](int p) { return p < start || p > end; }),
excluded.end());
sort(excluded.begin(), excluded.end());
excluded.erase(unique(excluded.begin(), excluded.end()), excluded.end());
TreeNode res = defaultTreeNode();
int curL = start;
for (int p : excluded) {
int curR = p - 1;
if (curL <= curR) {
TreeNode chunk = get(curL, curR, operation);
res = applyFunction(res, chunk, operation);
}
curL = p + 1;
}
if (curL <= end) {
TreeNode chunk = get(curL, end, operation);
res = applyFunction(res, chunk, operation);
}
return res;
}
TreeNode get(int start, int end, int operation = 1) {
return getX(1, 1, N, start, end, operation, 1);
}
// Things you may need to change
TreeNode applyFunction(TreeNode x, TreeNode y, int operation) {
if (operation == 1) return function1(x, y);
if (operation == 2) return function2(x, y);
return TreeNode();
}
TreeNode function1(TreeNode x, TreeNode y) {
TreeNode res;
res.val = x.val + y.val;
return res;
}
TreeNode function2(TreeNode x, TreeNode y) {
TreeNode res;
res.val = max(x.val, y.val);
return res;
}
TreeNode applyUpdateFunction(TreeNode x, TreeNode y) {
TreeNode res;
res = x;
res.val += y.val;
return res;
}
TreeNode defaultTreeNode() {
TreeNode res;
res.val = 0;
return res;
}
int changeOperationAfterLevel(int level, int operation) {
return operation;
}
// End of things you may need to change
void push(int node, int l, int r, int operation) {
if (!lazyStatus[node]) return;
tree[node] = applyUpdateFunction(tree[node], lazy[node]);
if (l != r) {
lazy[node * 2] = applyUpdateFunction(lazy[node * 2], lazy[node]);
lazy[node * 2 + 1] = applyUpdateFunction(lazy[node * 2 + 1], lazy[node]);
lazyStatus[node * 2] = lazyStatus[node * 2 + 1] = true;
}
lazy[node] = defaultTreeNode();
lazyStatus[node] = false;
}
void buildX(int node, int l, int r, int operation, int level) {
if (l == r) { tree[node] = array[l]; return; }
int mid = (l + r) >> 1;
int nextOp = changeOperationAfterLevel(level, operation);
buildX(node * 2, l, mid, nextOp, level + 1);
buildX(node * 2 + 1, mid + 1, r, nextOp, level + 1);
tree[node] = applyFunction(tree[node * 2], tree[node * 2 + 1], operation);
}
void updateX(int node, int l, int r, int L, int R, TreeNode val, int operation, int level) {
push(node, l, r, operation);
if (r < L || l > R) return;
if (l >= L && r <= R) {
lazy[node] = applyUpdateFunction(lazy[node], val);
lazyStatus[node] = true;
push(node, l, r, operation);
return;
}
int mid = (l + r) >> 1;
int nextOp = changeOperationAfterLevel(level, operation);
updateX(node * 2, l, mid, L, R, val, nextOp, level + 1);
updateX(node * 2 + 1, mid + 1, r, L, R, val, nextOp, level + 1);
tree[node] = applyFunction(tree[node * 2], tree[node * 2 + 1], operation);
}
TreeNode getX(int node, int l, int r, int L, int R, int operation, int level) {
push(node, l, r, operation);
if (r < L || l > R) {
return defaultTreeNode();
}
if (l >= L && r <= R) return tree[node];
int mid = l + (r - l) / 2;
int nextOp = changeOperationAfterLevel(level, operation);
if (mid < L) return getX(node * 2 + 1, mid + 1, r, L, R, nextOp, level + 1);
if (mid >= R) return getX(node * 2, l, mid, L, R, nextOp, level + 1);
return applyFunction(
getX(node * 2, l, mid, L, R, nextOp, level + 1),
getX(node * 2 + 1, mid + 1, r, L, R, nextOp, level + 1),
operation
);
}
};
/* ========================================================================
-> Templates End
======================================================================== */
ifstream fin("datorii.in");
ofstream fout("datorii.out");
#define cin fin
#define cout fout
constexpr int MAXN = 2e5 + 2;
void CoreCompute(const int testIdx, const bool isLastTest) {
int n, q;
cin >> n >> q;
SegmentTree<int> st(n);
for (int i = 1; i <= n; ++i) {
cin >> st.array[i].val;
}
st.build(1, n);
while (q--) {
int p, x, y;
cin >> p >> x >> y;
if (p == 0) {
st.update(x, x, {-y});
} else {
cout << st.get(x, y).val << "\n";
}
}
}
void Precompute() {}
int main() {
func::FastIO();
func::HighPrecisionOutput();
int numberOfTests = 1;
// cin >> numberOfTests;
#if defined(DebugMode) && !defined(Generator)
const auto startPrecomputation = chrono::high_resolution_clock::now();
#endif
Precompute();
#if defined(DebugMode) && !defined(Generator)
const auto endPrecompute = chrono::high_resolution_clock::now();
const chrono::duration<double> precomputationDuration = endPrecompute - startPrecomputation;
const auto startCoreComputation = chrono::high_resolution_clock::now();
#endif
for (int testIdx = 1; testIdx <= numberOfTests; ++testIdx) {
// cout << "Case #" << testIdx << ": ";
// cout << "Test #" << testIdx << ": ";
CoreCompute(testIdx, testIdx == numberOfTests);
}
#if defined(DebugMode) && !defined(Generator)
cout << "\n\n=================================================================\n";
cout << "-> Precomputation Running Time: " << precomputationDuration.count() << " seconds." << '\n';
const auto endCoreComputation = chrono::high_resolution_clock::now();
const chrono::duration<double> coreComputationDuration = endCoreComputation - startCoreComputation;
cout << "-> Core Computation Running Time: " << coreComputationDuration.count() << " seconds." << "\n";
const chrono::duration<double> totalComputationDuration = endCoreComputation - startPrecomputation;
cout << "-> Total Computation Running Time: " << totalComputationDuration.count() << " seconds." << "\n";
cout << "=================================================================\n";
#endif
return 0;
}