Pagini recente » Cod sursa (job #3285367) | Cod sursa (job #3284405) | Cod sursa (job #222918) | Cod sursa (job #78192) | Cod sursa (job #3285148)
#include <iostream>
#include <fstream>
#include <vector>
#include <limits>
using namespace std;
const auto INF = numeric_limits<unsigned long long>::max();
ifstream f("podm.in");
ofstream g("podm.out");
unsigned long long solve_podm(int n, const vector<int> &d)
{
/// dp[i][j] = nr minim de inmultiri pt a calcula M_i * M_i+1 *..* M_j
vector<vector<unsigned long long>> dp(n + 1, vector<unsigned long long> (n + 1, INF));
//
/// Cazul de baza 1: nu avem ce inmulti
for(int i = 1; i <= n; i++)
dp[i][i] = 0ULL;
//
/// Cazul de baza 2: matrice d[i - 1] x d[i] inmultitt cu matrice d[i] x d[i + 1]
/// (matrice pe pozitii consecutive)
for(int i = 1; i < n; i++)
dp[i][i + 1] = 1ULL * d[i - 1] * d[i] * d[i + 1];
//
/// Cazul general:
/// dp[i][j] = min(dp[i][k] + dp[k + 1][j] + d[i - 1] * d[k] * d[j]), k = i : j - 1
for(int len = 2; len <= n; ++len)
{
for(int i = 1; i + len - 1 <= n; ++i) ///fixam capatul din stanga
{
int j = i + len - 1; ///capatul din dreapta se deduce
//
/// Iteram prin indicii dintre capete, spargand sirul de inmultiri in doua
for(int k = i; k < j; ++k)
{
unsigned long long cost = dp[i][k] + dp[k + 1][j] + 1ULL * d[i - 1] * d[k] * d[j];
dp[i][j] = min(dp[i][j], cost);
}
}
}
//
return dp[1][n];
}
int main()
{
int n;
f >> n;
vector<int> d(n + 1);
for(int i = 0; i <= n; i++)
f >> d[i];
g << solve_podm(n, d);
f.close();
g.close();
return 0;
}