#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define fi first
#define sc second
#define pb push_back
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef double db;
typedef pair<int, int> pii;
template<typename type>
using ordered_set = tree<type, null_type, less<type>, rb_tree_tag, tree_order_statistics_node_update>;
const int N = 305, mod = 1e9 + 7, inf = 2e9;
const int dl[] = {-1, 0, 1, 0}, dc[] = {0, 1, 0, -1};
const int ddl[] = {-1, -1, -1, 0, 1, 1, 1, 0}, ddc[] = {-1, 0, 1, 1, 1, 0, -1, -1};
mt19937 gen(chrono::steady_clock::now().time_since_epoch().count());
int rng(int lo = 1, int hi = INT_MAX) {
uniform_int_distribution<int> rnd(lo, hi);
return rnd(gen);
}
struct mint {
int val;
mint(int32_t x = 0) {
val = x % mod;
}
mint(long long x) {
val = x % mod;
}
mint operator+(mint x) {
return val + x.val;
}
mint operator-(mint x) {
return val - x.val + mod;
}
mint operator*(mint x) {
return 1LL * val * x.val;
}
void operator+=(mint x) {
val = (*this + x).val;
}
void operator-=(mint x) {
val = (*this - x).val;
}
void operator*=(mint x) {
val = (*this * x).val;
}
friend auto operator>>(istream& in, mint &x) -> istream& {
in >> x.val;
x.val %= mod;
return in;
}
friend auto operator<<(ostream& out, mint const &x) -> ostream& {
out << x.val;
return out;
}
};
int n, q, timer, a[N][N], in[N*N], out[N*N], up[N*N][17];
vector<int> g[N*N];
vector<pii> v;
map<pii, int> mp;
struct union_find {
int k, dad[N*N];
void add(pii x) {
++k;
dad[k] = k;
mp[x] = k;
}
int get(int x) {
if(x == dad[x])
return x;
return dad[x] = get(dad[x]);
}
void join(int x, int y) {
int dx = get(x), dy = get(y);
if(dx != dy) {
dad[dx] = dy;
g[dy].pb(dx);
}
}
} dsu;
void dfs(int nod, int p) {
in[nod] = ++timer;
up[nod][0] = p;
for(int i=1; (1<<i)<=n*n; i++)
up[nod][i] = up[up[nod][i-1]][i-1];
for(auto nxt : g[nod])
if(nxt != p)
dfs(nxt, nod);
out[nod] = timer;
}
bool is_ancestor(int x, int y) {
return in[x] <= in[y] && out[y] <= out[x];
}
int get_lca(int x, int y) {
if(is_ancestor(x, y))
return x;
if(is_ancestor(y, x))
return y;
for(int j=16; j>=0; j--)
if(up[x][j] && !is_ancestor(up[x][j], y))
x = up[x][j];
return up[x][0];
}
int32_t main()
{
freopen("matrice2.in", "r", stdin);
freopen("matrice2.out", "w", stdout);
cin.tie(nullptr)->sync_with_stdio(0);
cin >> n >> q;
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++) {
cin >> a[i][j];
v.pb({i, j});
}
sort(v.begin(), v.end(), [](pii x, pii y) {
return a[x.fi][x.sc] > a[y.fi][y.sc];
});
for(auto x : v) {
dsu.add(x);
for(int k=0; k<4; k++) {
int l = x.fi + dl[k], c = x.sc + dc[k];
if(mp[{l, c}])
dsu.join(mp[{l, c}], mp[x]);
}
}
dfs(dsu.k, 0);
for(int i=1; i<=q; i++) {
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
int lca = get_lca(mp[{x1, y1}], mp[{x2, y2}]) - 1;
cout << a[v[lca].fi][v[lca].sc] << '\n';
}
return 0;
}