Pagini recente » Cod sursa (job #2606950) | Cod sursa (job #978007) | Cod sursa (job #1971209) | Cod sursa (job #382403) | Cod sursa (job #3236486)
#include <iostream>
#include <fstream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <iomanip>
#include <cstring>
using namespace std;
const int MAXN = 405;
const double INF = 1e9;
const double EPS = 1e-9;
int N;
double x1[MAXN], y1_[MAXN], x2[MAXN], y2_[MAXN];
bool used[MAXN];
int match[MAXN];
vector<int> g[MAXN];
double dist[MAXN][MAXN];
double sqr(double x) {
return x * x;
}
double distance(int i, int j) {
return sqrt(sqr(x1[i] - x2[j]) + sqr(y1_[i] - y2_[j]));
}
bool try_kuhn(int v) {
if (used[v]) return false;
used[v] = true;
for (int to : g[v]) {
if (match[to] == -1 || try_kuhn(match[to])) {
match[to] = v;
return true;
}
}
return false;
}
bool check(double mid) {
for (int i = 0; i < N; i++) {
g[i].clear();
for (int j = 0; j < N; j++) {
if (dist[i][j] <= mid) {
g[i].push_back(j);
}
}
}
memset(match, -1, sizeof(match));
for (int v = 0; v < N; v++) {
memset(used, 0, sizeof(used));
if (!try_kuhn(v)) return false;
}
return true;
}
pair<double, double> solve() {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
dist[i][j] = distance(i, j);
}
}
double left = 0, right = 1500;
while (right - left > EPS) {
double mid = (left + right) / 2;
if (check(mid)) {
right = mid;
} else {
left = mid;
}
}
double max_dist = right;
// Calculăm suma minimă folosind algoritmul Hungarian
vector<double> u(N), v(N);
vector<int> p(N), way(N);
for (int i = 0; i < N; i++) {
p[0] = i;
int j0 = 0;
vector<double> minv(N, INF);
vector<bool> used(N, false);
do {
used[j0] = true;
int i0 = p[j0], j1;
double delta = INF;
for (int j = 1; j < N; j++)
if (!used[j]) {
double cur = dist[i0][j] - u[i0] - v[j];
if (cur < minv[j]) {
minv[j] = cur;
way[j] = j0;
}
if (minv[j] < delta) {
delta = minv[j];
j1 = j;
}
}
for (int j = 0; j < N; j++)
if (used[j]) {
u[p[j]] += delta;
v[j] -= delta;
} else
minv[j] -= delta;
j0 = j1;
} while (p[j0] != 0);
do {
int j1 = way[j0];
p[j0] = p[j1];
j0 = j1;
} while (j0);
}
double sum_dist = 0;
for (int i = 0; i < N; i++)
sum_dist += dist[p[i]][i];
return {max_dist, sum_dist};
}
int main() {
ifstream fin("adapost.in");
ofstream fout("adapost.out");
fin >> N;
for (int i = 0; i < N; i++)
fin >> x1[i] >> y1_[i];
for (int i = 0; i < N; i++)
fin >> x2[i] >> y2_[i];
auto [max_dist, sum_dist] = solve();
fout << fixed << setprecision(5) << max_dist << " " << sum_dist << endl;
return 0;
}