Pagini recente » Cod sursa (job #789261) | Cod sursa (job #2750019) | Cod sursa (job #2131255) | Cod sursa (job #1986371) | Cod sursa (job #3220950)
#include <fstream>
#include <vector>
#include <cstring>
#define MAX_NODES 50000
#define INF 0x7f7f7f7f
using namespace std;
ifstream fin("bellmanford.in");
ofstream fout("bellmanford.out");
vector<pair<int, int>> directedGraph[MAX_NODES + 1];
int distances[MAX_NODES + 1];
// Let L be the list of all edges.
// This algorithm relaxes each edge which belongs to L, |V| - 1 times, where |V| = number of vertices.
// Our list of edges is: vector<pair<int, int>> directedGraph[MAX_NODES + 1];
void bellmanFord(int startNode, int nrNodes) {
memset(distances, INF, sizeof distances);
distances[startNode] = 0;
for (int time = 1; time < nrNodes; ++time) {
for (int node = 1; node <= nrNodes; ++node) {
for (pair<int, int> neighbour : directedGraph[node]) {
distances[neighbour.first] = min(distances[neighbour.first], distances[node] + neighbour.second);
}
}
}
// detect if there is a negative weight cycle
// if there is not, then it means that the relaxation process doe not take
for (int node = 1; node <= nrNodes; ++node) {
for (pair<int, int> neighbour : directedGraph[node]) {
if (distances[node] + neighbour.second < distances[neighbour.first]) {
fout << "Ciclu negativ!";
return;
}
}
}
for (int node = 2; node <= nrNodes; ++node) {
fout << distances[node] << ' ';
}
}
int main() {
int nrNodes, nrEdges;
fin >> nrNodes >> nrEdges;
for (int edge = 0; edge < nrEdges; ++edge) {
int sourceNode, destinationNode, edgeCost;
fin >> sourceNode >> destinationNode >> edgeCost;
directedGraph[sourceNode].push_back({ destinationNode, edgeCost });
}
bellmanFord(1, nrNodes);
return 0;
}