Pagini recente » Istoria paginii runda/shiggydiggy123 | Monitorul de evaluare | Cod sursa (job #2265052) | Cod sursa (job #2707071) | Cod sursa (job #3213566)
#include <bits/stdc++.h>
using namespace std;
ifstream in("ssnd.in");
ofstream out("ssnd.out");
#define pii pair<int, int>
#define pb push_back
#define fi first
#define se second
const int NMAX = 1000030;
const int INF = 0x3f3f3f3f;
int t;
long long n;
bool ciur[NMAX];
vector<int> prime;
void read()
{
in >> t;
}
void eratostene()
{
ciur[0] = ciur[1] = 1;
for (int i = 4; i <= NMAX; i += 2)
ciur[i] = 1;
for (int i = 3; i * i <= NMAX; i += 2)
if (!ciur[i]) // prim
for (int j = 2; j * i <= NMAX; j++)
ciur[i * j] = 1;
for (int i = 2; i <= NMAX; i++)
if (!ciur[i])
prime.pb(i);
}
void solve()
{
eratostene();
while (t--)
{
in >> n;
int i = 0, card = 1, divsum = 1;
while (n > 1)
{
int p = prime[i], pow = 0;
while (n % p == 0)
{
pow++;
n /= p;
}
if (pow) // exista divizorul prim
{
// card = (d1+1)(d2+1)...(dn+1) //unde di este puterea divizorului prim pi din descompunerea in fac. primi
card = card * (pow + 1);
// sum = produs((pi^(di+1) - 1) / (pi - 1 ) )
// ar fi nevoie de invers modular, sau folosesc formula pt a^n-b^n, asadar
// sum = produs((p^di+p^(di-1)+..+p^2+p^1+1)), pt fiecare divizor
int powp = p, currsum = 1;
while (pow)
currsum = (currsum + powp) % 9973, powp = (powp * p) % 9973, pow--;
divsum = (divsum * currsum) % 9973;
}
i++;
}
out << card << ' ' << divsum << '\n';
}
}
int main()
{
read();
solve();
return 0;
}