#include <iostream>
#include <fstream>
#include <cstdlib>
#include <iomanip>
#include <set>
#include <unordered_set>
#include <map>
#include <unordered_map>
#include <vector>
#include <algorithm>
#include <queue>
#include <stack>
#include <bitset>
#include <functional>
#include <utility>
#include <cmath>
#include <string>
#include <deque>
#include <cstring>
#include <ctime>
#include <random>
#include <chrono>
#include <climits>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/detail/standard_policies.hpp>
//#include <windows.h>
#include <complex>
#pragma GCC optimize("fast-math")
using namespace std;
using namespace __gnu_pbds;
#define pb(x) push_back(x)
#define all(x) x.begin(),x.end()
#define lsb(x) ((x) & (-x))
#define msb(x) ((x) == 0 ? 0 : (1 << (64 - __builtin_clzll(x) - 1)))
#define DX return cout<<ans[0],void();
#define XD return cout<<ans[1],void();
#define bleacs(x) return cout<<x<<'\n',void();
typedef long long ll;
typedef pair<ll,ll> pll;
typedef vector<ll> vll;
typedef vector<vector<ll>> vvll;
typedef tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update>ordered_set;
mt19937_64 rng(chrono :: steady_clock :: now().time_since_epoch().count());
const size_t fixed_random = rng();
clock_t start_time = clock(), end_time;
ll random_seed(ll modulo) {
return rng() % modulo;
}
template <typename T>
inline void hash_combine(size_t& seed, const T& value) {
seed ^= hash<T>{}(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
struct pair_hash {
template <typename T1, typename T2>
size_t operator () (const pair<T1, T2>& p) const {
size_t seed = fixed_random;
hash_combine(seed, p.first);
hash_combine(seed, p.second);
return seed;
}
};
struct normal_hash {
template <typename T>
size_t operator () (const T& p) const {
size_t seed = fixed_random;
hash_combine(seed, p);
return seed;
};
};
template<typename T,typename V>istream& operator>>(istream&in,pair<T,V>&a){in>>a.first>>a.second;return in;}
template<typename T,typename V>ostream& operator<<(ostream&out,const pair<T,V>&a){out<<a.first<<' '<<a.second;return out;}
template<typename T>istream& operator>>(istream&in,vector<T> &a){for(typename vector<T>::iterator i=a.begin();i!=a.end();i++)cin>>*i;return in;}
template<typename T>ostream& operator<<(ostream&out,const vector<T>&a){for(T x:a)out<<x<<' ';return out;}
template<typename T,typename V,typename X,typename Z> pair<T,V>operator+(const pair<T,V> &a,const pair<X,Z>&b){return {a.first+b.first,a.second+b.second};}
template<typename T,typename V,typename X,typename Z> pair<T,V>operator-(const pair<T,V> &a,const pair<X,Z>&b){return {a.first-b.first,a.second-b.second};}
template<typename T,typename V> vector<T> operator+(const vector<T>&a,const vector<V> &b){vector<T> rez;if(a.size()!=b.size())return rez;for(ll i=0;i<a.size();i++)rez.pb(a[i]+b[i]);return rez;}
template<typename T,typename V> T operator+=(T &a,const V &b){return a=a+b;}
ll gcd(ll a,ll b){ll r;while(b)r=a%b,a=b,b=r;return a;}
ll mod=1e9+7;
ll inf=3*1e18;
class AIB{
vector<ll> v;
public:
AIB(ll n){v.resize(n+1);}
void add(ll p,ll val=1){for(;p<v.size();p+=lsb(p))v[p]+=val;}
ll ask(ll p){ll rez=0;for(;p;p-=lsb(p))rez+=v[p];return rez;}
};
ll fastexp(ll b,ll e,ll mod=mod)
{
ll rez=1;
while(e)
{
if(e&1)rez=rez*b%mod;
b=b*b%mod;
e>>=1;
}
return rez;
}
string pi="3141592653589793238462643383279502884197169399375105820974944";
/*class minaint{
vector<ll>v;
ll n;
public:
minaint(ll x=0){n=x;v.resize(2*n+5);}
build(vector<ll>&a)
{
ll i;
for(i=1;i<=n;i++)v[i+n]=a[i];
for(i=n;i>=1;i--)v[i]=min(v[i<<1],v[i<<1|1]);
}
ll ask(ll l,ll r)
{
ll rez=1e15;
for(l+=n,r+=n+1;l<r;l>>=1,r>>=1)
{
if(l&1)rez=min(rez,v[l++]);
if(r&1)rez=min(rez,v[--r]);
}
return rez;
}
};*/
/*class maxaint{
vector<ll>v;
ll n;
public:
maxaint(ll x=0){n=x;v.resize(2*n+5);}
build(vector<ll>&a)
{
build()
}
};*/
/*class AINTfirstlast{
vector<ll> v,v2;
ll n;
void build(vector<ll>&a,ll l,ll r,ll p)
{
if(l==r)return v2[p]=v[p]=a[l],void();
ll mid=(l+r)/2;
build(a,l,mid,p+1);
build(a,mid+1,r,p+2*(mid-l+1));
v[p]=min(v[p+1],v[p+2*(mid-l+1)]);
v2[p]=max(v2[p+1],v2[p+2*(mid-l+1)]);
}
pll firstsmaller(ll l,ll r,ll val,ll il,ll ir,ll p)
{
//cerr<<il<<' '<<ir<<' '<<p<<' '<<v[p]<<endl;
ll mid=(il+ir)/2;
if(il==ir)return {v[p],il};
if(l<=il&&ir<=r)
{
if(v[p+1]<=val) return {v[p],firstsmaller(l,r,val,il,mid,p+1).second};
return {v[p],firstsmaller(l,r,val,mid+1,ir,p+2*(mid-il+1)).second};
}
if(l>mid)return firstsmaller(l,r,val,mid+1,ir,p+2*(mid-il+1));
if(r<=mid)return firstsmaller(l,r,val,il,mid,p+1);
pll st,dr;
dr=firstsmaller(l,r,val,mid+1,ir,p+2*(mid-il+1));
st=firstsmaller(l,r,val,il,mid,p+1);
if(st.first<=val)return st;
return dr;
}
pll lastsmaller(ll l,ll r,ll val,ll il,ll ir,ll p)
{
//cerr<<il<<' '<<ir<<' '<<p<<' '<<v[p]<<endl;
ll mid=(il+ir)/2;
if(il==ir)return {v[p],il};
if(l<=il&&ir<=r)
{
if(v[p+2*(mid-il+1)]<=val) return {v[p],lastsmaller(l,r,val,mid+1,ir,p+2*(mid-il+1)).second};
return {v[p],lastsmaller(l,r,val,il,mid,p+1).second};
}
if(l>mid)return lastsmaller(l,r,val,mid+1,ir,p+2*(mid-il+1));
if(r<=mid)return lastsmaller(l,r,val,il,mid,p+1);
pll st,dr;
dr=lastsmaller(l,r,val,mid+1,ir,p+2*(mid-il+1));
st=lastsmaller(l,r,val,il,mid,p+1);
if(dr.first<=val)return dr;
return st;
}
pll firstbigger(ll l,ll r,ll val,ll il,ll ir,ll p)
{
//cerr<<il<<' '<<ir<<' '<<p<<' '<<v[p]<<endl;
ll mid=(il+ir)/2;
if(il==ir)return {v2[p],il};
if(l<=il&&ir<=r)
{
if(v2[p+1]>=val) return {v2[p],firstbigger(l,r,val,il,mid,p+1).second};
return {v2[p],firstbigger(l,r,val,mid+1,ir,p+2*(mid-il+1)).second};
}
if(l>mid)return firstbigger(l,r,val,mid+1,ir,p+2*(mid-il+1));
if(r<=mid)return firstbigger(l,r,val,il,mid,p+1);
pll st,dr;
dr=firstbigger(l,r,val,mid+1,ir,p+2*(mid-il+1));
st=firstbigger(l,r,val,il,mid,p+1);
if(st.first>=val)return st;
return dr;
}
pll lastbigger(ll l,ll r,ll val,ll il,ll ir,ll p)
{
//cerr<<il<<' '<<ir<<' '<<p<<' '<<v[p]<<endl;
ll mid=(il+ir)/2;
if(il==ir)return {v2[p],il};
if(l<=il&&ir<=r)
{
if(v2[p+2*(mid-il+1)]>=val) return {v2[p],lastbigger(l,r,val,mid+1,ir,p+2*(mid-il+1)).second};
return {v2[p],lastbigger(l,r,val,il,mid,p+1).second};
}
if(l>mid)return lastbigger(l,r,val,mid+1,ir,p+2*(mid-il+1));
if(r<=mid)return lastbigger(l,r,val,il,mid,p+1);
pll st,dr;
dr=lastbigger(l,r,val,mid+1,ir,p+2*(mid-il+1));
st=lastbigger(l,r,val,il,mid,p+1);
if(dr.first>=val)return dr;
return st;
}
public:
AINT(ll x=0){n=x,v.resize(2*x+3),v2.resize(2*x+3);}
void build(vector<ll> &a)
{
build(a,1,n,1);
}
ll firstsmaller(ll l,ll r,ll val)
{
return firstsmaller(l,r,val,1,n,1).second;
//daca nu exista se returneaza r
}
ll lastsmaller(ll l,ll r,ll val)
{
return lastsmaller(l,r,val,1,n,1).second;
//daca nu exista se returneaza l
}
ll firstbigger(ll l,ll r,ll val)
{
return firstbigger(l,r,val,1,n,1).second;
//daca nu exista se returneaza r
}
ll lastbigger(ll l,ll r,ll val)
{
return lastbigger(l,r,val,1,n,1).second;
//daca nu exista se returneaza l
}
};*/
class AINT
{
ll n;
vector<ll> v,lazy;
void push(ll p)
{
v[p]+=lazy[p];
lazy[p<<1]+=lazy[p];
lazy[p<<1|1]+=lazy[p];
lazy[p]=0;
}
ll getval(ll p)
{
return v[p]+lazy[p];
}
void add(ll st,ll dr,ll p,ll l,ll r,ll val)
{
if(l<=st&&dr<=r)
{
lazy[p]+=val;
return;
}
ll mid=(st+dr)/2;
push(p);
if(l<=mid)
add(st,mid,p<<1,l,r,val);
if(r>mid)
add(mid+1,dr,p<<1|1,l,r,val);
v[p]=max(getval(p<<1),getval(p<<1|1));
}
ll ask(ll st,ll dr,ll p,ll l,ll r)
{
if(l<=st&&dr<=r)
{
return getval(p);
}
ll mid=(st+dr)/2;
push(p);
ll a=0,b=0;
if(l<=mid)
a=ask(st,mid,p<<1,l,r);
if(r>mid)
b=ask(mid+1,dr,p<<1|1,l,r);
return max(a,b);
}
public:
AINT(ll x=0){n=x,v.resize(4*x+5),lazy.resize(4*x+5);}
void add(ll l,ll r,ll val)
{
add(1,n,1,l,r,val);
}
ll ask(ll l,ll r)
{
if(l>r)return 0ll;
return ask(1,n,1,l,r);
}
};
void addmod(ll &x,ll y,ll modu=mod)
{
x+=y;
if(x>=mod)x-=modu;
if(x<0)x+=modu;
}
void multmod(ll &x,ll y,ll modu=mod)
{
x=x*y%modu;
}
string ans[]={"No\n","Yes\n"};
ll maxitaxi;
vector<vector<ll>>divs;
vector<ll>fact,inv;
void eratostene(bool doarprime=0)
{
ll i,j;
divs.resize(maxitaxi+1);
for(i=1;i<=maxitaxi;i++)
{
if(doarprime&&divs[i].size()>1)
continue;
for(j=i;j<=maxitaxi;j+=i)
divs[j].pb(i);
}
}
void precalcfact()
{
ll i,j;
fact.resize(maxitaxi+1);
inv.resize(maxitaxi+1);
fact[0]=inv[0]=1;
for(i=1;i<=maxitaxi;i++)
{
fact[i]=fact[i-1]*i%mod;
inv[i]=fastexp(fact[i],mod-2,mod);
}
}
ll comb(ll n,ll k)
{
if(k<0||k>n)
return 0ll;
return fact[n]*inv[k]%mod*inv[n-k]%mod;
}
ll catalan(ll n)
{
return comb(2*n,n)*fastexp(n+1,mod-2)%mod;
}
void constsetup()
{
maxitaxi=1e5;
mod=998244353;
eratostene();
precalcfact();
}
void setup()
{
}
struct comp{
bool operator()(pll a,pll b)
{
return !(a.first!=b.first?a.first<b.first:a.second>b.second);
}
};
void solve(ll T)
{
ll n,m,i,j,k,l,x,y;
cin>>n>>m;
vector<vector<ll>>vec(n+1);
vector<ll>depth(n+1),timp(n+1);
for(i=1;i<=m;i++)
{
cin>>x>>y;
vec[x].pb(y);
vec[y].pb(x);
}
vector<vector<ll>>rez;
vector<ll>emp;
stack<ll> aux;
function<void(ll)>tarjan=[&](ll x)
{
aux.push(x);
ll mn=1e15;
for(ll y:vec[x])
{
if(depth[y]==0)
{
depth[y]=depth[x]+1;
tarjan(y);
mn=min(mn,timp[y]);
if(timp[y]<depth[x])continue;
rez.pb(emp);
while(aux.top()!=x)
{
rez.back().pb(aux.top());
aux.pop();
}
rez.back().pb(x);
}
else
mn=min(mn,depth[y]);
}
timp[x]=min(depth[x],mn);
};
depth[1]=1;
tarjan(1);
cout<<rez.size()<<'\n';
for(i=0;i<rez.size();i++)
{
cout<<rez[i]<<'\n';
}
}
int main()
{
freopen("biconex.in","r",stdin);
freopen("biconex.out","w",stdout);
ios::sync_with_stdio(false);
cin.tie(0);
ll c=0;
constsetup();
setup();
//ll t;cin>>t;while(t--)
solve(++c);
return 0;
}