Pagini recente » Cod sursa (job #2179180) | Cod sursa (job #2957458) | Cod sursa (job #2979793) | Cod sursa (job #2772437) | Cod sursa (job #3189329)
#include <iostream>
#include <fstream>
#include <vector>
#include <climits>
using namespace std;
// Function to find the minimum sum of distances using the Hungarian Algorithm
int findMinDistance(vector<vector<int>>& distanceMatrix) {
int n = distanceMatrix.size();
vector<int> u(n), v(n), p(n), way(n);
for (int i = 1; i < n; ++i) {
p[0] = i;
int j0 = 0;
vector<int> minv(n, INT_MAX);
vector<char> used(n, false);
do {
used[j0] = true;
int i0 = p[j0], delta = INT_MAX, j1;
for (int j = 1; j < n; ++j) {
if (!used[j]) {
int cost = distanceMatrix[i0][j] - u[i0] - v[j];
if (cost < minv[j]) {
minv[j] = cost;
way[j] = j0;
}
if (minv[j] < delta) {
delta = minv[j];
j1 = j;
}
}
}
for (int j = 0; j < n; ++j) {
if (used[j]) {
u[p[j]] += delta;
v[j] -= delta;
} else {
minv[j] -= delta;
}
}
j0 = j1;
} while (p[j0] != 0);
do {
int j1 = way[j0];
p[j0] = p[j1];
j0 = j1;
} while (j0);
}
return -v[0];
}
int main() {
ifstream fin("cc.in");
ofstream fout("cc.out");
int N;
fin >> N;
vector<vector<int>> distanceMatrix(N + 1, vector<int>(N + 1));
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= N; ++j) {
fin >> distanceMatrix[i][j];
}
}
fout << findMinDistance(distanceMatrix) << endl;
fin.close();
fout.close();
return 0;
}