Pagini recente » Cod sursa (job #1211713) | Cod sursa (job #3152795)
#include <fstream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
ifstream cin("indep.in");
ofstream cout("indep.out");
using ll = long long int;
struct Bigint {
string a;
int sign;
Bigint(){}
void operator = (string b) {
a= (b[0]=='-' ? b.substr(1) : b);
reverse(a.begin(), a.end());
(*this).Remove0(b[0]=='-' ? -1 : 1);
}
Bigint(string x) {(*this)=x;}
Bigint(ll x) {(*this)=to_string(x);}
void operator = (ll x){*this=to_string(x);}
char operator[](int i){return a[i];}
int size() {return a.size();}
Bigint inverseSign() {sign*=-1; return (*this);}
Bigint Remove0(int newSign) {
sign = newSign;
for(int i=a.size()-1; i>0 && a[i]=='0'; i--) a.pop_back();
if(a.size()==1 && a[0]=='0') sign=1;
return (*this);
}
bool operator == (Bigint x) {return sign==x.sign && a==x.a;}
bool operator == (string x) {return *this==Bigint(x);}
bool operator == (ll x) {return *this==Bigint(x);}
bool operator != (Bigint x) {return !(*this==x);}
bool operator != (string x) {return !(*this==x);}
bool operator != (ll x) {return !(*this==x);}
bool operator < (Bigint b) {
if (sign!=b.sign) return sign<b.sign;
if(a.size()!=b.size()) return a.size()*sign<b.size()*sign;
for(int i=a.size()-1; i>=0; i--)
if(a[i] != b[i]) return a[i]<b[i];
return false;
}
bool operator < (string x) {return *this<Bigint(x);}
bool operator < (ll x) {return *this<Bigint(x);}
bool operator <= (Bigint b) {return *this==b || *this<b;}
bool operator <= (string b) {return *this==b || *this<b;}
bool operator <= (ll b) {return *this==b || *this<b;}
bool operator > (Bigint b) {return !(*this==b || *this<b);}
bool operator > (string x) {return !(*this==x || *this<x);}
bool operator > (ll b) {return !(*this==b || *this<b);}
bool operator >= (Bigint b) {return *this==b || *this>b;}
bool operator >= (string b) {return *this==b || *this>b;}
bool operator >= (ll b) {return *this==b || *this>b;}
Bigint operator + (Bigint b) {
if(sign != b.sign) return (*this)-b.inverseSign();
Bigint sum;
for(int i=0, carry=0; i<a.size() || i<b.size() || carry; i++){
if (i<a.size()) carry+=a[i]-'0';
if (i<b.size()) carry+=b[i]-'0';
sum.a += (carry % 10 + 48);
carry /= 10;
}
return sum.Remove0(sign);
}
Bigint operator + (string x) {return *this+Bigint(x);}
Bigint operator + (ll x) {return *this+Bigint(x);}
Bigint operator ++ (int) {*this+=1; return *this-1;}
Bigint operator ++ () {*this+=1; return *this;}
void operator += (Bigint x) {*this = *this+x;}
void operator += (string x) {*this = *this+x;}
void operator += (ll x) {*this = *this+x;}
Bigint operator - ( Bigint b ) {
if(sign != b.sign) return (*this)+b.inverseSign();
if(*this < b) return (b - *this).inverseSign();
Bigint sub;
for(int i=0,borrow=0; i<a.size(); i++) {
borrow = a[i]-borrow-(i<b.size() ? b.a[i] : '0');
sub.a += borrow>=0 ? borrow+'0' : borrow + 58;
borrow = borrow>=0 ? 0:1;
}
return sub.Remove0(sign);
}
Bigint operator - (string x) {return *this-Bigint(x);}
Bigint operator - (ll x) {return *this-Bigint(x);}
Bigint operator -- (int) {*this-=1; return *this+1;}
Bigint operator -- () {*this-=1; return *this;}
void operator -= (Bigint x) {*this = *this-x;}
void operator -= (string x) {*this = *this-x;}
void operator -= (ll x) {*this = *this-x;}
Bigint operator * (Bigint b) {
Bigint mult("0");
for(int i=0, k=a[i]; i<a.size(); i++, k=a[i]) {
while(k-- -'0') mult=mult+b;
b.a.insert(b.a.begin(),'0');
}
return mult.Remove0(sign * b.sign);
}
Bigint operator * (string x) {return *this*Bigint(x);}
Bigint operator * (ll x) {return *this*Bigint(x);}
void operator *= (Bigint x) {*this = *this*x;}
void operator *= (string x) {*this = *this*x;}
void operator *= (ll x) {*this = *this*x;}
Bigint operator / (Bigint b) {
if(b.size()==1 && b[0]=='0') b.a[0]/=(b[0]-'0');
Bigint c("0"), d;
for(int j=0; j<a.size(); j++) d.a += "0";
int dSign = sign*b.sign; b.sign=1;
for(int i=a.size()-1; i>=0; i--) {
c.a.insert(c.a.begin(),'0');
c=c+a.substr(i,1);
while(!(c<b)) c=c-b, d.a[i]++;
}
return d.Remove0(dSign);
}
Bigint operator / (string x) {return *this/Bigint(x);}
Bigint operator / (ll x) {return *this/Bigint(x);}
void operator /= (Bigint x) {*this = *this/x;}
void operator /= (string x) {*this = *this/x;}
void operator /= (ll x) {*this = *this/x;}
Bigint operator % (Bigint b) {
if( b.size()==1 && b[0]=='0') b.a[0]/=(b[0]-'0') ;
Bigint c("0");
int cSign = sign*b.sign; b.sign=1;
for( int i=a.size()-1; i>=0; i-- ) {
c.a.insert( c.a.begin(),'0');
c = c+a.substr(i,1);
while(!(c<b)) c=c-b;
}
return c.Remove0(cSign);
}
Bigint operator % (string x) {return *this%Bigint(x);}
Bigint operator % (ll x) {return *this%Bigint(x);}
void operator %= (Bigint x) {*this = *this%x;}
void operator %= (string x) {*this = *this%x;}
void operator %= (ll x) {*this = *this%x;}
void print() {
if(sign==-1) putchar('-');
for(int i=a.size()-1; i>=0; i--) putchar(a[i]);
}
friend istream& operator >>(istream &in,Bigint &x){
string s; in>>s; x=s; return in;
}
friend ostream& operator <<(ostream &out,Bigint &x){
if(x.sign==-1) putchar('-');
for(int i=x.size()-1; i>=0; i--)
putchar(x[i]);
return out;
}
friend Bigint pow(Bigint base, Bigint pw){
Bigint ans=1;
while(pw!=0){
if(pw%2 !=0) ans*=base;
base*=base, pw/=2;
}
return ans;
}
friend Bigint pow(Bigint a, Bigint b,Bigint mod) {
if (b==0) return Bigint(1);
Bigint tmp=pow(a,b/2,mod);
if ((b%2)==0) return (tmp*tmp)%mod;
else return (((tmp*tmp)%mod)*a)%mod;
}
friend Bigint sqrt(Bigint x) {
Bigint ans=x,tmp=(x+1)/2;
while (tmp<ans) ans=tmp, tmp=(tmp+x/tmp)/2;
return ans;
}
friend Bigint gcd(Bigint a,Bigint b){
return a%b==0 ? b : gcd(b, a%b);
}
friend Bigint lcm(Bigint a,Bigint b){
return a/gcd(a,b);
}
};
const int DIM = 1e3;
int n;
vector<int> v,primes;
bool* sieve;
vector<int> mb(DIM+1,1);
void read() {
cin>>n;
v.resize(n+1);
for(int i=1;i<=n;i++) {
cin>>v[i];
}
}
void constructPrimes() {
sieve = new bool[DIM+1];
sieve[1]=1;
for(int i=2;i*i<=n;i++) {
if(sieve[i]) {
continue;
}
primes.push_back(i);
for(int j=i*i;j<=DIM;j+=i) {
sieve[j]=1;
}
}
}
void build_mb() {
int sq = sqrt(DIM);
for(int i=1;i<=DIM;i++) {
if(sieve[i]) {
continue;
}
for(int j=i;j<=DIM;j+=i) {
mb[j]*=-1;
}
if(i>=sq) {
continue;
}
for(int j=i*i;j<=DIM;j+=i*i) {
mb[j]=0;
}
}
}
void solve() {
constructPrimes();
vector<int> fr_mult(1e3+1);
for(int x=1;x<=1e3;x++) {
for(int i=1;i<=n;i++) {
if(v[i]%x==0) {
fr_mult[x]++;
}
}
}
build_mb();
Bigint rs=0;
for(int x=1;x<=1e3;x++) {
rs = rs + mb[x] * ( (1<<fr_mult[x])-1);
}
cout<<rs;
}
int32_t main() {
read();
solve();
return 0;
}