Pagini recente » Cod sursa (job #3129645) | Cod sursa (job #2227337) | Cod sursa (job #3252053) | Borderou de evaluare (job #804578) | Cod sursa (job #3137494)
#include <stdio.h>
#include <assert.h>
#include <vector>
using namespace std;
#define maxn 360
#define inf 2000000000
#define ll long long
int N, M, S, D;
int Drum, L, Sum;
vector <int> A[maxn];
int G[maxn];
int Dist[maxn], From[maxn], Pot[maxn];
int H[maxn], P[maxn];
int C[maxn][maxn], F[maxn][maxn], Cost[maxn][maxn];
void push(int x)
{
int aux;
while (x/2>1 && Dist[H[x]]<Dist[H[x/2]])
{
aux = H[x], H[x] = H[x/2], H[x/2] = aux;
P[H[x]] = x;
P[H[x/2]] = x/2;
x /= 2;
}
}
void pop(int x)
{
int y = 0, aux;
while (x != y)
{
y = x;
if (y*2<=L && Dist[H[x]]>Dist[H[y*2]]) x = y*2;
if (y*2+1 <= L && Dist[H[x]]>Dist[H[y*2+1]]) x = y*2+1;
aux = H[x], H[x] = H[y], H[y] = aux;
P[H[x]] = x;
P[H[y]] = y;
}
}
int BellmanFord()
{
int i, stop = 0, j, k;
for (i = 1; i <= N; i++) Dist[i] = inf;
Dist[S] = 0;
for (i = 1; i <= N && !stop; i++)
{
stop = 1;
for (j = 1; j <= N; j++)
for (k = 0; k < G[j]; k++)
if (C[j][A[j][k]]-F[j][A[j][k]]>0 && Dist[j]+Cost[j][A[j][k]]<Dist[A[j][k]])
{
stop = 0;
Dist[A[j][k]] = Dist[j] + Cost[j][A[j][k]];
}
}
Sum = Dist[D];
return stop;
}
int Dijkstra()
{
int i, j;
// Fac transformarea astfel incat sa am doar costuri pozitive pe arcele active (cele cu capacitate > flux)
for (i = 1; i <= N; i++)
for (j = 0; j < G[i]; j++)
if (Dist[i] != inf && Dist[A[i][j]] != inf) Cost[i][A[i][j]] += Dist[i] - Dist[A[i][j]];
// Initializari
for (i = 1; i <= N; i++)
{
Dist[i] = inf;
H[i] = i;
P[i] = i;
From[i] = -1;
}
// Fac Dijkstra
Dist[S] = 0;
H[1] = S, H[S] = 1;
P[1] = S, P[S] = 1;
L = N;
while (L>1 && Dist[H[1]] != inf)
{
for (i = 0; i < G[H[1]]; i++)
{
int v = A[H[1]][i];
if (C[H[1]][v]-F[H[1]][v]>0) assert(Cost[H[1]][v]>=0); // Verific daca am arce cu cost negativ active
if (C[H[1]][v]-F[H[1]][v]>0 && Dist[H[1]]+Cost[H[1]][v]<Dist[v])
{
Dist[v] = Dist[H[1]] + Cost[H[1]][v];
From[v] = H[1];
push(P[v]);
}
}
H[1] = H[L--];
P[H[1]] = 1;
if (L > 1) pop(1);
}
// Daca am gasit drum, cresc fluxul pe el
if (Dist[D] != inf)
{
int Vmin = inf;
Drum = 1;
for (i = D; i != S; i = From[i])
Vmin = min(Vmin, C[From[i]][i] - F[From[i]][i]);
for (i = D; i != S; i = From[i])
{
F[From[i]][i] += Vmin;
F[i][From[i]] -= Vmin;
}
Sum += Dist[D];
return Vmin * Sum;
}
return 0;
}
ll Flux()
{
ll Rez = 0;
Drum = 1;
// Cat timp mai exista un drum valabil, bag flux
while (Drum)
{
Drum = 0;
Rez += Dijkstra();
}
return Rez;
}
int main()
{
freopen("fmcm.in", "r", stdin);
freopen("fmcm.out", "w", stdout);
int i, x, y, z, cap;
// Citesc graful
scanf("%d %d %d %d ", &N, &M, &S, &D);
for (i = 1; i <= M; i++)
{
scanf("%d %d %d %d ", &x, &y, &cap, &z);
A[x].push_back(y);
A[y].push_back(x);
C[x][y] = cap;
Cost[x][y] = z;
Cost[y][x] = -z;
}
for (i = 1; i <= N; i++) G[i] = A[i].size();
// Fac primul Bellman-Ford, cand inca am costuri negative
assert(BellmanFord());
// Calculez fluxul maxim de cost minim
printf("%lld\n", Flux());
return 0;
}