Pagini recente » Cod sursa (job #978025) | Cod sursa (job #778076) | Cod sursa (job #484218) | Cod sursa (job #1362914) | Cod sursa (job #3136369)
#include <stdio.h>
#define MODULO 666013;
//algortim pentru inmultirea matricilor
void MatrixProduct(long long int A[2][2], long long int B[2][2], long long int resultArray[2][2]) {
long long int tempArray[2][2];
for(int i = 0; i < 2; ++i) {
//inmultirea se face linie coloana, mai apoi mod MODULO
for(int j = 0; j < 2; ++j) {
tempArray[i][j] = 0;
for(int k = 0; k < 2; ++k) {
tempArray[i][j] += (A[i][k] * B[k][j]) % MODULO;
tempArray[i][j] %= MODULO;
}
}
}
for (int i = 0; i < 2; i++) {
//retinem rezultatul in resultArray
for (int j = 0; j < 2; j++) {
resultArray[i][j] = tempArray[i][j];
}
}
}
//ridicarea la putere a unei matrici, cu un exponent dat
void matrixPower(long long int A[2][2], long long int exponent) {
long long int resultArray[2][2] = {{1, 0}, {0, 1}};
long long int baseArray[2][2];
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
baseArray[i][j] = A[i][j];
}
}
//cam cea mai rapida metoda la care m-am gandit pentru ridicarea la putere a unei matrici
while (exponent > 0) {
if (exponent % 2 == 1) {
MatrixProduct(resultArray, baseArray, resultArray);
}
MatrixProduct(baseArray, baseArray, baseArray);
exponent /= 2;
}
for (int i = 0; i < 2; i++) {
//retinem rezultatul in A
for (int j = 0; j < 2; j++) {
A[i][j] = resultArray[i][j];
}
}
}
long long int getFibonacciModulo(long long int kTh) {
long long int kThFibonacciElement[2][2] = {{1, 1}, {1, 0}};
matrixPower(kThFibonacciElement, kTh - 1);
return kThFibonacciElement[0][0];
}
int main() {
long long int kTh;
freopen("kfib.in", "r", stdin);
freopen("kfib.out", "w", stdout);
scanf("%lld", &kTh);
long long int result = getFibonacciModulo(kTh);
printf("%lld\n", result);
return 0;
}