#include <stdio.h>
typedef long long int ll;
void matrixMultiply(ll A[2][2], ll B[2][2], ll result[2][2], ll modulo) {
ll temp[2][2];
int i, j, k;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
temp[i][j] = 0;
for (k = 0; k < 2; k++) {
temp[i][j] += (A[i][k] * B[k][j]) % modulo;
temp[i][j] %= modulo;
}
}
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
result[i][j] = temp[i][j];
}
}
}
void matrixPower(ll A[2][2], ll exponent, ll modulo) {
ll result[2][2] = {{1, 0}, {0, 1}};
ll base[2][2];
int i, j, k;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
base[i][j] = A[i][j];
}
}
while (exponent > 0) {
if (exponent % 2 == 1) {
matrixMultiply(result, base, result, modulo);
}
matrixMultiply(base, base, base, modulo);
exponent /= 2;
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
A[i][j] = result[i][j];
}
}
}
ll getFibonacciModulo(ll k, ll modulo) {
if (k <= 1)
return k;
ll fibMatrix[2][2] = {{1, 1}, {1, 0}};
matrixPower(fibMatrix, k - 1, modulo);
return fibMatrix[0][0];
}
int main() {
ll k;
freopen("input.txt", "r", stdin);
freopen("kfib.out", "w", stdout);
scanf("%lld", &k);
ll result = getFibonacciModulo(k, 666013);
printf("%lld\n", result);
return 0;
}