Pagini recente » Cod sursa (job #3004689) | Cod sursa (job #57381) | Cod sursa (job #1425382) | Cod sursa (job #481250) | Cod sursa (job #2962639)
//Algoritmul lui Hopcroft Karp
//Complexitate: O(sqrt(V * E))
#include <algorithm>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <climits>
using namespace std;
int n, m, e;
vector<int> la[1001];
queue<int> q;//multimea de noduri din partea stanga
vector<int> st, dr, dist;
ifstream fin("cuplaj.in");
ofstream fout("cuplaj.out");
bool BFS()
{
for (int i = 1; i <= n; i++)
if (!dr[i])
{
q.push(i);
dist[i] = 0;
}
else
dist[i] = 111111111111;
dist[0] = 111111111111;
while (!q.empty())
{
int nod = q.front();
q.pop();
if (dist[nod] < dist[0])
{
for (auto urm : la[nod])
{
if (dist[st[urm]] == 111111111111)
{
dist[st[urm]] = 1 + dist[nod];
q.push(st[urm]);
}
}
}
}
return dist[0] != 111111111111;
}
bool DFS(int nod)
{
if (nod != 0)
{
for (auto urm : la[nod])
if (1 + dist[nod] == dist[st[urm]] && DFS(st[urm]))
{
st[urm] = nod;
dr[nod] = urm;
return true;
}
dist[nod] = 111111111111;
return false;
}
return true;
}
int cuplajMax()
{
int rez = 0;
while (BFS())
{
for (int i = 1; i <= n; i++)
if (!dr[i] && DFS(i))
rez++;
}
return rez;
}
int main()
{
fin >> n >> m >> e;
st.resize(n + 1, 0);
dr.resize(n + 1, 0);
dist.resize(n + 1, 0);
for (int i = 1; i <= e; i++)
{
int n1, n2;
fin >> n1 >> n2;
la[n1].push_back(n2);
}
fout << cuplajMax() << '\n';
for (int i = 1; i <= m; i++)
if (st[i])
fout << st[i] << ' ' << i << '\n';
fin.close();
fout.close();
return 0;
}