Pagini recente » Cod sursa (job #809279) | Cod sursa (job #910986) | Cod sursa (job #2962377)
// Complexitate: Problema Cuplajului maximal in graf bipartit
// se rezolva cu algoritmu lui lui Hopcroft Karp care are complexitatea
// O(sqrt(V)*E), unde V - numarul de noduri, E - numarul de muchii
#include <vector>
#include <queue>
#include <cstring>
#include <fstream>
using namespace std;
ifstream fin("cuplaj.in");
ofstream fout("cuplaj.out");
#define V_MAX 10001
#define E_MAX 100001
#define NOT_MATCHED_YET 0
int N, M, E;
bool visited[V_MAX];
vector<int> neighbors[V_MAX];
int left_partition[V_MAX], right_partition[V_MAX];
// functia care realizeaza cuplajul celor doua partitii
bool try_matching(int node)
{
if (visited[node])
return false;
visited[node] = true;
// cautam prin vecinii nodului daca mai exista unul necuplat inca
for (auto neigh : neighbors[node]) {
if (right_partition[neigh] == NOT_MATCHED_YET) {
left_partition[node] = neigh;
right_partition[neigh] = node;
return true;
}
}
// ne uitam daca putem cupla persoanele
// din cealalta partitie cu alte persoane
for (auto neigh : neighbors[node]) {
if (try_matching(right_partition[neigh])) {
left_partition[node] = neigh;
right_partition[neigh] = node;
return true;
}
}
return false;
}
int main() {
int x, y, matching = 0;
bool matched;
fin >> N >> M >> E;
for (int i = 1; i <= E; ++i) {
fin >> x >> y;
// avem flux de la stanga la dreapta
neighbors[x].push_back(y);
}
// cat timp reusim sa efectuam cuplaje
do {
matched = false;
memset(visited, false, sizeof(visited));
for (int i = 1; i <= N; ++i) {
// cautam nodurile care nu au pereche
if (left_partition[i] == NOT_MATCHED_YET) {
matched |= try_matching(i);
}
}
} while (matched);
// numarul de cuplaje
for (int i = 1; i <= N; ++i) {
if (left_partition[i] != NOT_MATCHED_YET) {
++matching;
}
}
fout << matching << '\n';
for(int i = 1; i <= N; ++i) {
if (left_partition[i] != NOT_MATCHED_YET) {
fout << i << ' ' << left_partition[i] << '\n';
}
}
return 0;
}