#include <fstream>
#include <vector>
#include <unordered_map>
#include <queue>
#include <limits>
using namespace std;
class Graph {
private:
int _nodes, _edges;
vector<unordered_map<int, pair<int, int>>> _residual_graph;
vector<int> _path;
vector<int> _costs;
vector<int> _new_costs;
vector<int> _real_costs;
vector<bool> _in_queue;
bool dijkstra(const int source, const int dest) {
_costs = vector<int>(_nodes + 1, numeric_limits<int>::max());
_path = vector<int>(_nodes + 1, 0);
_new_costs = vector<int>(_nodes + 1, numeric_limits<int>::max());
//first element is distance, second is node
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> edge_heap;
_costs[source] = 0;
_new_costs[source] = 0;
edge_heap.emplace(0, source);
while (!edge_heap.empty()) {
auto crt_node = edge_heap.top().second;
auto cost = edge_heap.top().first;
edge_heap.pop();
//if it's an outdated entry, skip it
if(cost != _costs[crt_node])
continue;
for (auto& edge : _residual_graph[crt_node]) {
const auto capacity = edge.second.second;
if (capacity > 0) {
auto node = edge.first;
auto modified_dist = edge.second.first + _real_costs[crt_node] - _real_costs[node];
if (_costs[node] > _costs[crt_node] + modified_dist) {
_path[node] = crt_node;
_costs[node] = _costs[crt_node] + modified_dist;
_new_costs[node] = _new_costs[crt_node] + edge.second.first;
edge_heap.emplace(_costs[node], node);
}
}
}
}
for(int node = 1; node <= _nodes; ++node){
_real_costs[node] = _new_costs[node];
}
return _costs[dest] != numeric_limits<int>::max();
}
void compute_real_costs(const int source) {
_real_costs = vector<int>(_nodes + 1, numeric_limits<int>::max());
_in_queue = vector<bool>(_nodes + 1);
queue<int> node_queue;
node_queue.push(source);
_real_costs[source] = 0;
_in_queue[source] = true;
while (!node_queue.empty()) {
auto crt_node = node_queue.front();
node_queue.pop();
_in_queue[crt_node] = false;
for (auto& edge : _residual_graph[crt_node]) {
auto node = edge.first;
auto cost = edge.second.first;
if (_real_costs[node] > _real_costs[crt_node] + cost) {
_real_costs[node] = _real_costs[crt_node] + cost;
if (!_in_queue[node]) {
node_queue.push(node);
_in_queue[node] = true;
}
}
}
}
}
public:
Graph(int nodes, int edges, vector<unordered_map<int, pair<int, int>>>& adj_list, int source) :
_nodes(nodes),
_edges(edges),
_residual_graph(move(adj_list))
{
compute_real_costs(source);
for (int i = 1; i <= _nodes; ++i) {
for (const auto& edge : _residual_graph[i]) {
if (_residual_graph[edge.first].find(i) == _residual_graph[edge.first].end()) {
//returning edge's cost should be -original edge, to cancel out and prevent negative cycles
_residual_graph[edge.first][i].first = -_residual_graph[i][edge.first].first;
_residual_graph[edge.first][i].second = 0;
}
}
}
}
int minCostOfMaxFlow(const int source, const int dest) {
int min_cost = 0;
while (dijkstra(source, dest)) {
int flux = numeric_limits<int>::max();
int node = dest;
while (_path[node] != 0) {
const int father = _path[node];
flux = min(flux, _residual_graph[father][node].second);
node = father;
}
node = dest;
while (_path[node] != 0) {
const int father = _path[node];
min_cost += flux * _residual_graph[father][node].first;
_residual_graph[father][node].second -= flux;
_residual_graph[node][father].second += flux;
node = father;
}
}
return min_cost;
}
};
int main()
{
ifstream in("fmcm.in");
int nodes, edges, source, dest;;
in >> nodes >> edges >> source >> dest;
vector<unordered_map<int, pair<int,int>>> adj_list(nodes + 1);
for(int i=0; i<edges; ++i){
int node1, node2, capacity, cost;
in >> node1 >> node2 >> capacity >> cost;
adj_list[node1][node2] = make_pair(cost,capacity);
}
in.close();
Graph flux_time(nodes, edges, adj_list,source);
ofstream out("fmcm.out");
out << flux_time.minCostOfMaxFlow(source, dest);
out.close();
}