Pagini recente » Cod sursa (job #1400978) | Cod sursa (job #3250175) | Cod sursa (job #3148627) | Cod sursa (job #1340060) | Cod sursa (job #2954873)
#include <fstream>
#include <queue>
#include <unordered_map>
#include <vector>
#include <limits>
using namespace std;
class Graph {
private:
int _nodes, _edges;
vector<unordered_map<int, int>> _residual_graph;
vector<int> _bfs_tree;
vector<bool> _visited;
vector<unordered_map<int, int>> _adj_list;
bool BFS(const int start, const int dest) {
queue<int> node_queue;
_visited = vector<bool>(_nodes);
_bfs_tree = vector<int>(_nodes);
_bfs_tree[start] = -1;
_visited[start] = true;
node_queue.push(start);
while (!node_queue.empty()) {
const int node = node_queue.front();
node_queue.pop();
for (auto& edge : _residual_graph[node]) {
if (!_visited[edge.first] && edge.second > 0) {
_visited[edge.first] = true;
_bfs_tree[edge.first] = node;
node_queue.push(edge.first);
}
}
}
return _visited[dest];
}
public:
Graph(int nodes, int edges, vector<unordered_map<int, int>> adj_list) :
_nodes(nodes),
_edges(edges),
_residual_graph(adj_list),
_adj_list(std::move(adj_list))
{
for (int i = 0; i < _nodes; ++i) {
for (const auto& edge : _adj_list[i]) {
if (_residual_graph[edge.first].find(i) == _residual_graph[edge.first].end())
_residual_graph[edge.first][i] = 0;
}
}
}
int maxFlow(const int source, const int dest) {
int max_flux = 0;
while (BFS(source, dest)) {
for (const auto& edge : _residual_graph[dest]) {
int node = edge.first;
if (edge.second == _adj_list[node][dest] || !_visited[node])
continue;
int flux = numeric_limits<int>::max();
flux = min(flux, _residual_graph[node][dest]);
while (_bfs_tree[node] != -1) {
const int father = _bfs_tree[node];
flux = min(flux, _residual_graph[father][node]);
if (flux == 0)
break;
node = father;
}
if (flux == 0)
continue;
max_flux += flux;
node = edge.first;
_residual_graph[node][dest] -= flux;
_residual_graph[dest][node] += flux;
while (_bfs_tree[node] != -1) {
const int father = _bfs_tree[node];
_residual_graph[father][node] -= flux;
_residual_graph[node][father] += flux;
node = father;
}
}
}
return max_flux;
}
vector<pair<int, int>> maxMatching(const int set1, const int set2) {
vector<pair<int, int>> edges;
maxFlow(0, _nodes - 1);
//would've been better to check the smaller of set1 and set2
for(int i = 1; i<=set1; ++i){
for(const auto& edge : _adj_list[i]){
int j = edge.first;
if(_residual_graph[i][edge.first] == 0){
edges.emplace_back(i, j - set1);
}
}
}
return edges;
}
};
int main()
{
ifstream in("cuplaj.in");
int set1, set2,edges;
in >> set1 >> set2 >> edges;
int nodes = set1 + set2 + 2;
vector<unordered_map<int, int>> adj_list(nodes);
for (int i = 0; i < edges; ++i) {
int node1, node2;
in >> node1 >> node2;
adj_list[node1][set1 + node2] = 1;
}
for (int i = 1; i <= set1; ++i){
adj_list[0][i] = 1;
}
for(int i = set1 + 1; i < nodes - 1; ++i){
adj_list[i][nodes - 1] = 1;
}
in.close();
Graph matching_time(nodes, edges, adj_list);
auto sol = matching_time.maxMatching(set1, set2);
ofstream out("cuplaj.out");
out << sol.size()<<"\n";
for(const auto& edge : sol){
out << edge.first << " " << edge.second << "\n";
}
out.close();
return 0;
}