///Max Flow Dinic's Algorithm
///O(N*M*log(MAX_Capacity))
#include <bits/stdc++.h>
using namespace std;
ifstream f("maxflow.in");
ofstream g("maxflow.out");
int n,m,x,y,c;
template <int MAXV, class T = int> struct Dinic {
const static bool SCALING = false; // non-scaling = V^2E, Scaling=VElog(U) with higher constant
int lim = 1;
const T INF = numeric_limits<T>::max();
struct edge {
int to, rev;
T cap, flow;
};
int s = 1,t = MAXV;
int level[MAXV], ptr[MAXV];
vector<edge> adj[MAXV];
void addEdge(int a, int b, T cap, bool isDirected = true) {
adj[a].push_back({b, adj[b].size(), cap, 0});
adj[b].push_back({a, adj[a].size() - 1, isDirected ? 0 : cap, 0});
}
bool bfs() {
queue<int> q({s});
fill(level + 1, level + n + 1, -1);
level[s] = 0;
while (!q.empty() && level[t] == -1) {
int v = q.front();
q.pop();
for (auto e : adj[v]) {
if (level[e.to] == -1 && e.flow < e.cap && (!SCALING || e.cap - e.flow >= lim)) {
q.push(e.to);
level[e.to] = level[v] + 1;
}
}
}
return level[t] != -1;
}
T dfs(int v, T flow) {
if (v == t || !flow)
return flow;
for (; ptr[v] < adj[v].size(); ptr[v]++) {
edge &e = adj[v][ptr[v]];
if (level[e.to] != level[v] + 1)
continue;
if (T pushed = dfs(e.to, min(flow, e.cap - e.flow))) {
e.flow += pushed;
adj[e.to][e.rev].flow -= pushed;
return pushed;
}
}
return 0;
}
long long calc() {
long long flow = 0;
for (lim = SCALING ? (1 << 30) : 1; lim > 0; lim >>= 1) {
while (bfs()) {
fill(ptr + 1, ptr + n + 1, 0);
while (T pushed = dfs(s, INF))
flow += pushed;
}
}
return flow;
}
};
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
Dinic <1005, int> flux;
f>>n>>m;
for(int i=1; i<=m; i++)
{
f>>x>>y>>c;
flux.addEdge(x, y, c);
}
flux.t = n;
g<<flux.calc();
return 0;
}