#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
class graph{
int n, m, ct, sum;
const int INF= (1<<30);
vector < vector < int > > G, reverseG;
struct muchie
{
int left, right, cost;
};
struct comp
{
inline bool operator() (const muchie& a, const muchie& b)
{
return a.cost < b.cost;
}
};
public:
graph(int n, int m);
int get_n()
{
return n;
}
void readGraph(vector < vector < int > > Ad);
void dfs(int node, vector < int > &vis);
int connectedComponents();
vector < int > minimumDistance(int source);
void dfsSccDirect(int node, vector < int > &vis, stack < int > &scc);
void dfsSccReverse(int node, vector < int > &vis2, vector < vector < int > > &sol);
vector < vector < int > > scc();
void dfsTopo(int node, vector < int > &vis, stack < int > &topo);
vector < int > topologicalSort();
void dfsBiconnected(int node, int dad, vector < int > low, vector < int > level, vector < int > &vis, vector < vector < int > > &sol);
vector < vector < int > > biconnectedComponents();
void dfsCriticalConnections(int node, int dad, vector < int > low, vector < int > level, vector < int > &vis, vector < vector < int > > &sol);
vector<vector<int>> criticalConnections(int nr, vector<vector<int>>& connections);
int find(int val, vector < int > mult);
void unionDisjoint(int a, int b, vector < int > mult, vector < int > sz);
vector < int > disjoint(vector < vector < int > > input);
int apm(vector < muchie > apmList, vector < pair < int, int > > &solApm);
bool hakimi(vector < int > grades);
vector < int > dijkstra(vector < vector < pair < int, int > > > G);
vector < int > bellmanFord(vector < vector < pair < int, int > > > G);
vector < vector < int > > royFloyd(vector < vector < int > > inputMatrix);
int bfsFlow(vector < int > &parent, vector < vector < int > > &rez, vector < vector < int > > &adj);
int maxFlow(vector < vector < pair < int, int > > > G);
int bfsDiam(int first, int &last, vector < vector < int > > G);
int diam(vector < vector < int > > G);
void euler(int node, vector < vector < pair < int, int > > > e, vector < int > f, vector < int > &sol);
vector < int > solveEuler(vector < vector < pair < int, int > > > e);
int hamilton(vector < vector < pair < int, int > > > Ad);
vector < pair < int, int > > cuplaj(vector < vector < int > > G);
int dfsCuplaj(int node, vector < vector < int > > G, vector<int> &vis, vector<int> &left, vector<int> &right);
};
graph :: graph(int n, int m)
{
this->n = n;
this->m = m;
}
int graph :: connectedComponents()
{
int x, y, ct = 0;
vector < int > vis;
vis.resize(n + 1, false);
for(int i = 1; i <= n; ++i)
if(vis[i] == 0)
{
++ct;
dfs(i, vis);
}
return ct;
}
void graph :: dfs(int node, vector < int > &vis)
{
vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(vis[nnode] == 0)
dfs(nnode, vis);
}
}
vector < int > graph :: minimumDistance(int source)
{
vector < int > nodes;
queue < int > bfsQueue;
nodes.resize(n + 1, -1);
bfsQueue.push(source);
nodes[source] = 0;
while(!bfsQueue.empty())
{
int node = bfsQueue.front();
bfsQueue.pop();
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(nodes[nnode] == -1)
{
nodes[nnode] = nodes[node] + 1;
bfsQueue.push(nnode);
}
}
}
return nodes;
}
void graph :: dfsBiconnected(int node, int dad, vector < int > low, vector < int > level, vector < int > &vis, vector < vector < int > > &sol)
{
vis[node] = 1;
level[node] = level[dad] + 1;
low[node] = level[node];
stack < int > biconnected;
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(nnode != dad)
{
if(vis[nnode] == 1)
{
if(level[nnode] < low[node])
low[node] = level[nnode];
}
else
{
biconnected.push(nnode);
dfsBiconnected(nnode, node, low, level, vis, sol);
if(low[nnode] < low[node])
low[node] = low[nnode];
if(level[node] <= low[nnode])
{
++ct;
biconnected.push(node);
while(!biconnected.empty() && biconnected.top() != nnode)
{
sol[ct - 1].push_back(biconnected.top());
biconnected.pop();
}
if(!biconnected.empty())
{
sol[ct - 1].push_back(biconnected.top());
biconnected.pop();
}
}
}
}
}
}
vector < vector < int > > graph :: biconnectedComponents()
{
int x, y;
vector < vector < int > > sol;
vector < int > level, low, vis;
G.resize(n + 1);
sol.resize(n + 1);
level.resize(n + 1, 0);
low.resize(n + 1, 0);
vis.resize(n + 1, false);
ct = 0;
dfsBiconnected(1, 0, low, level, vis, sol);
return sol;
}
void graph :: dfsSccDirect(int node, vector < int > &vis, stack < int > &scc)
{
vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(vis[nnode] == 0)
dfsSccDirect(nnode, vis, scc);
}
scc.push(node);
}
void graph :: dfsSccReverse(int node, vector < int > &vis2, vector < vector < int > > &sol)
{
vis2[node] = 1;
sol[ct - 1].push_back(node);
for(int i = 0; i < reverseG[node].size(); ++i)
{
int nnode = reverseG[node][i];
if(vis2[nnode] == 0)
dfsSccReverse(nnode, vis2, sol);
}
}
vector < vector < int > > graph :: scc()
{
int x, y;
vector < vector < int > > sol;
vector < int > vis, vis2;
stack < int > scc;
reverseG.resize(n + 1);
sol.resize(n + 1);
vis.resize(n + 1, false);
vis2.resize(n + 1, false);
for(int i = 0; i < n; ++i)
for(int j = 0; j < G[i].size(); ++j)
reverseG[G[i][j]].push_back(i);
for(int i = 1; i <= n; ++i)
if(vis[i] == 0)
dfsSccDirect(i, vis, scc);
ct = 0;
while(!scc.empty())
{
int node = scc.top();
scc.pop();
if(vis2[node] == 0)
{
++ct;
dfsSccReverse(node, vis2, sol);
}
}
return sol;
}
void graph :: dfsTopo(int node, vector < int > &vis, stack < int > &topo)
{
vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(vis[nnode] == 0)
dfsTopo(nnode, vis, topo);
}
topo.push(node);
}
vector < int > graph :: topologicalSort()
{
int x, y;
vector < int > vis;
stack < int > topo;
vector < int > sol;
vis.resize(n + 1, false);
for(int i = 1; i <= n; ++i)
if(vis[i] == 0)
dfsTopo(i, vis, topo);
while(!topo.empty())
{
int node = topo.top();
topo.pop();
sol.push_back(node);
}
return sol;
}
void graph :: dfsCriticalConnections(int node, int dad, vector < int > low, vector < int > level, vector < int > &vis, vector < vector < int > > &sol)
{
vis[node] = 1;
if(dad == -1) level[node] = 1;
else level[node] = level[dad] + 1;
low[node] = level[node];
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(nnode != dad)
{
if(vis[nnode] == 1)
{
if(level[nnode] < low[node])
low[node] = level[nnode];
}
else
{
dfsCriticalConnections(nnode, node, low, level, vis, sol);
if(low[nnode] < low[node])
low[node] = low[nnode];
if(level[node] < low[nnode])
{
++ct;
sol.push_back({node, nnode});
}
}
}
}
}
vector<vector<int>> graph :: criticalConnections(int nr, vector<vector<int>>& connections)
{
n = nr;
ct = 0;
vector < vector < int > > G, sol;
vector < int > level, low, vis;
G.resize(n + 1);
level.resize(n + 1, 0);
low.resize(n + 1, 0);
vis.resize(n + 1, false);
for(int i = 0; i < connections.size(); ++i)
{
int x = connections[i][0];
int y = connections[i][1];
G[x].push_back(y);
G[y].push_back(x);
}
dfsCriticalConnections(0, -1, low, level, vis, sol);
return sol;
}
int graph :: find(int val, vector < int > mult)
{
int root = val, aux;
while(mult[root] != root)
root = mult[root];
while(mult[val] != root)
{
aux = mult[val];
mult[val] = root;
val = aux;
}
return root;
}
void graph :: unionDisjoint(int a, int b, vector < int > mult, vector < int > sz)
{
int rootA, rootB;
rootA = find(a, mult);
rootB = find(b, mult);
if(sz[rootA] < sz[rootB])
{
sz[rootB] += sz[rootA];
mult[rootA] = rootB;
}
else
{
sz[rootA] += sz[rootB];
mult[rootB] = rootA;
}
}
vector < int > graph :: disjoint(vector < vector < int > > input)
{
int task, x, y;
vector < int > mult, sz, sol;
mult.resize(n + 1, 0);
sz.resize(n + 1, 1);
for(int i = 1; i <= n; ++i)
mult[i] = i;
for(int i = 0; i < m; ++i)
{
task = input[i][0];
x = input[i][1];
y = input[i][2];
if(task == 1)
{
unionDisjoint(x, y, mult, sz);
}
else
{
int root1 = find(x, mult);
int root2 = find(y, mult);
if(root1 == root2) sol.push_back(1);
else sol.push_back(0);
}
}
return sol;
}
int graph :: apm(vector < muchie > apmList, vector < pair < int, int > > &solApm)
{
int m;
vector < int > mult, sz;
mult.resize(n + 1, 0);
sz.resize(n + 1, 1);
apmList.resize(m + 1);
for(int i = 1; i <= n; ++i)
mult[i] = i;
sort(apmList.begin(), apmList.end() - 1, comp());
sum = 0;
for(int i = 0; i < m; ++i)
{
int a = apmList[i].left;
int b = apmList[i].right;
int rootA = find(a, mult);
int rootB = find(b, mult);
if(rootA != rootB)
{
unionDisjoint(a, b, mult, sz);
solApm.push_back(make_pair(a, b));
sum += apmList[i].cost;
}
}
return sum;
}
vector < int > graph :: dijkstra(vector < vector < pair < int, int > > > G)
{
int m, x, y, c, node, nnode;
vector < int > vis, dist;
stack < pair < int, int > > s;
G.resize(n + 1);
dist.resize(n + 1, INF);
vis.resize(n + 1, 0);
dist[1] = 0;
s.push({0, 1});
while(!s.empty())
{
node = s.top().second;
c = s.top().first;
s.pop();
if(vis[node] == 1) continue;
else vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
{
nnode = G[node][i].first;
if(dist[nnode] > G[node][i].second + c)
{
dist[nnode] = G[node][i].second + c;
s.push({dist[nnode], nnode});
}
}
}
for(int i = 2; i <= n; ++i)
if(dist[i] == INF) dist[i] = 0;
return dist;
}
vector < int > graph :: bellmanFord(vector < vector < pair < int, int > > > G)
{
int x, y, c, source, dest;
vector < int > dist, vis, nr;
queue < int > q;
G.resize(n + 1);
dist.resize(n + 1, INF);
vis.resize(n + 1, 0);
nr.resize(n + 1, 0);
dist[1] = 0;
q.push(1);
vis[1] = 1;
while(!q.empty())
{
source = q.front();
q.pop();
vis[source] = 0;
nr[source]++;
if(nr[source] == n)
{
dist.clear();
dist.push_back(-1);
return dist;
}
for(int i = 0; i < G[source].size(); ++i)
{
dest = G[source][i].first;
c = G[source][i].second;
if(dist[source] + c < dist[dest])
{
dist[dest] = dist[source] + c;
if(vis[dest] == 0)
{
vis[dest] = 1;
q.push(dest);
}
}
}
}
return dist;
}
vector < vector < int > > graph :: royFloyd(vector < vector < int > > inputMatrix)
{
vector < vector < int > > matrix;
matrix.resize(n + 1);
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= n; ++j)
matrix[i].push_back(INF);
matrix[i][i] = 0;
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
if(inputMatrix[i][j]) matrix[i][j] = inputMatrix[i][j];
}
for(int k = 1; k <= n; ++k)
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
if((1LL * matrix[i][k] + 1LL * matrix[k][j]) < matrix[i][j])
matrix[i][j] = matrix[i][k] + matrix[k][j];
return matrix;
}
bool graph :: hakimi(vector < int > grades)
{
int x;
for(int i = 0; i < n; ++i)
sum += grades[x];
if(sum % 2 == 1)
return 0;
for(int i = 0; i < n; ++i)
if(grades[i] > n - 1)
return 0;
sort(grades.begin(), grades.end(), greater <int> ());
while(grades[0])
{
for(int i = 1; i <= grades[0]; ++i)
{
--grades[i];
if(grades[i] < 0)
return 0;
}
grades[0] = 0;
sort(grades.begin(), grades.end(), greater <int> ());
}
return 1;
}
int graph :: bfsDiam(int first, int &last, vector < vector < int > > G)
{
int diam;
queue < int > bfs;
vector < int > counter, vis;
counter.resize(n + 1, 0);
vis.resize(n + 1, 0);
bfs.push(first);
vis[first] = 1;
counter[first] = 1;
while(!bfs.empty())
{
int node = bfs.front();
bfs.pop();
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(vis[nnode] == 0)
{
vis[nnode] = 1;
counter[nnode] = counter[node] + 1;
bfs.push(nnode);
diam = counter[nnode];
last = nnode;
}
}
}
return diam;
}
int graph :: diam(vector < vector < int > > G)
{
int x, y, last, llast;
int val = bfsDiam(1, last, G);
int diam = bfsDiam(last, llast, G);
return diam;
}
int graph :: bfsFlow(vector < int > &parent, vector < vector < int > > &rez, vector < vector < int > > &adj)
{
queue < int > bfs;
parent.assign(n + 1, -1);
bfs.push(1);
parent[1] = 0;
while(!bfs.empty())
{
int node = bfs.front();
bfs.pop();
for(int i = 0; i < adj[node].size(); ++i)
{
int nnode = adj[node][i];
if(parent[nnode] == -1 && rez[node][nnode])
{
parent[nnode] = node;
bfs.push(nnode);
}
}
}
return parent[n];
}
int graph :: maxFlow(vector < vector < pair < int, int > > > G)
{
int x, y, c, flow = 0;
vector < int > parent;
vector < vector < int > > rez;
vector < vector < int > > adj;
G.resize(n + 1);
rez.resize(n + 1);
adj.resize(n + 1);
for(int i = 1; i <= n; ++i)
rez[i].resize(n + 1, 0);
for(int i = 1; i <= n; ++i)
for(int j = 0; j < G[i].size(); ++j)
{
int node = G[i][j].first;
rez[i][node] = G[i][j].second;
}
for(int i = 1; i <= n; ++i)
for(int j = 0; j < G[i].size(); ++j)
{
int node = G[i][j].first;
adj[i].push_back(node);
adj[node].push_back(i);
}
while(bfsFlow(parent, rez, adj) != -1)
{
for(int i = 0; i < adj[n].size(); ++i)
{
int nnode = adj[n][i];
if(nnode != -1)
{
int node = nnode;
int ant;
int newFlow = rez[node][n];
while(node != 1)
{
ant = parent[node];
newFlow = min(newFlow, rez[ant][node]);
node = ant;
}
node = nnode;
rez[node][n] -= newFlow;
rez[n][node] += newFlow;
while(node != 1)
{
ant = parent[node];
rez[ant][node] -= newFlow;
rez[node][ant] += newFlow;
node = ant;
}
flow += newFlow;
}
}
}
return flow;
}
void graph :: euler(int node, vector < vector < pair < int, int > > > e, vector < int > f, vector < int > &sol)
{
while(e[node].size())
{
int nnode = e[node].back().first;
int nr = e[node].back().second;
e[node].pop_back();
if(f[nr] == 0)
{
f[nr] = 1;
euler(nnode, e, f, sol);
}
}
sol.push_back(node);
}
vector < int > graph :: solveEuler(vector < vector < pair < int, int > > > e)
{
int x, y;
vector < int > sol, f;
f.resize(m + 5, 0);
e.resize(n + 1);
for(int i = 1; i <= n; ++i)
if(e[i].size() % 2 == 1)
{
sol.push_back(-1);
return sol;
}
euler(1, e, f, sol);
sol.pop_back();
return sol;
}
int graph :: hamilton(vector < vector < pair < int, int > > > Ad)
{
int x, y, c, sol = INF;
int aux = (1 << n);
int cost[aux][n];
for(int i = 0; i < aux; ++i)
for(int j = 0; j < n; ++j)
cost[i][j] = INF;
cost[1][0] = 0;
for(int i = 0; i < aux; ++i)
for(int j = 0; j < n; ++j)
if((i & (1 << j)))
for(int k = 0; k < Ad[j].size(); ++k)
if(i & (1 << Ad[j][k].first))
cost[i][j] = min(cost[i][j], cost[i ^ (1 << j)][Ad[j][k].first] + Ad[j][k].second);
for(int i = 0; i < Ad[0].size(); ++i)
sol = min(sol, cost[aux - 1][Ad[0][i].first] + Ad[0][i].second);
return sol;
}
int graph :: dfsCuplaj(int node, vector < vector < int > > G, vector<int> &vis, vector<int> &left, vector<int> &right)
{
if(vis[node] == 1) return 0;
vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
if (!right[G[node][i]] || dfsCuplaj(right[G[node][i]], G, vis, left, right))
{
right[G[node][i]] = node;
left[node] = G[node][i];
return 1;
}
return 0;
}
vector < pair < int, int > > graph :: cuplaj(vector < vector < int > > G)
{
int e, x, y;
vector < pair < int, int > > sol;
vector < int > vis;
G.resize(n + 1);
vis.resize(n + 1, 0);
vector < int > left(10001, 0), right(10001, 0);
bool ok = 1;
while(ok == 1)
{
ok = 0;
for(int i = 0; i <= n; ++i)
vis[i] = 0;
for(int i = 1; i <= n; ++i)
if(left[i] == 0 && dfsCuplaj(i, G, vis, left, right) == 1)
ok = 1;
}
for (int i = 1; i <= n; ++i)
if (left[i] != 0)
sol.push_back(make_pair(i, left[i]));
return sol;
}
void graph :: readGraph(vector < vector < int > > Ad)
{
G.resize(n + 1);
for(int i = 1; i <= n; ++i)
for(int j = 0; j < Ad[i].size(); ++j)
G[i].push_back(Ad[i][j]);
}
//Use this structure for apm input
/*struct muchie
{
int left, right, cost;
};*/
int main()
{
ifstream in("dfs.in");
ofstream out("dfs.out");
int n, m, x, y;
in >> n >> m;
graph G(n, m);
vector < vector < int > > Ad;
Ad.resize(n + 1);
for(int i = 1; i <= m; ++i)
{
in >> x >> y;
Ad[x].push_back(y);
Ad[y].push_back(x);
}
G.readGraph(Ad);
out << G.connectedComponents();
return 0;
}