#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
ifstream in("cuplaj.in");
ofstream out("cuplaj.out");
class graph{
int n, ct, sum;
const int INF= (1<<30);
vector < vector < int > > G, ReverseG, sol, Cost;
queue < int > Bfs, q;
stack < int > Ctc, Topo, Biconex;
vector < int > vis, vis2;
vector < int > level, low, mult, sz, grade, dist, nr;
vector < pair < int, int > > sol_apm;
typedef pair < int , int > Pair;
priority_queue < Pair , vector < Pair > , greater < Pair > > S;
vector < vector < pair < int, int > > > E;
vector < int > f, sol_euler;
struct muchie
{
int left, right, cost;
};
vector < muchie > apm;
struct comp
{
inline bool operator() (const muchie& a, const muchie& b)
{
return a.cost < b.cost;
}
};
void bfs(int source)
{
vector < int > nodes;
nodes.resize(n + 1, -1);
Bfs.push(source); nodes[source] = 0;
while(!Bfs.empty())
{
int node = Bfs.front();
Bfs.pop();
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(nodes[nnode] == -1)
{
nodes[nnode] = nodes[node] + 1;
Bfs.push(nnode);
}
}
}
for(int i = 1; i <= n; ++i)
out << nodes[i] << " ";
}
void dfs(int node)
{
vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(vis[nnode] == 0)
dfs(nnode);
}
}
void dfs_ctc_1(int node)
{
vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(vis[nnode] == 0)
dfs_ctc_1(nnode);
}
Ctc.push(node);
}
void dfs_ctc_2(int node)
{
vis2[node] = 1;
sol[ct - 1].push_back(node);
for(int i = 0; i < ReverseG[node].size(); ++i)
{
int nnode = ReverseG[node][i];
if(vis2[nnode] == 0)
dfs_ctc_2(nnode);
}
}
void dfs_topo(int node)
{
vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(vis[nnode] == 0)
dfs_topo(nnode);
}
Topo.push(node);
}
void dfs_biconex(int node, int dad)
{
vis[node] = 1;
level[node] = level[dad] + 1;
low[node] = level[node];
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(nnode != dad)
{
if(vis[nnode] == 1)
{
if(level[nnode] < low[node])
low[node] = level[nnode];
}
else
{
Biconex.push(nnode);
dfs_biconex(nnode, node);
if(low[nnode] < low[node])
low[node] = low[nnode];
if(level[node] <= low[nnode])
{
++ct;
Biconex.push(node);
while(!Biconex.empty() && Biconex.top() != nnode)
{
sol[ct - 1].push_back(Biconex.top());
Biconex.pop();
}
if(!Biconex.empty())
{
sol[ct - 1].push_back(Biconex.top());
Biconex.pop();
}
}
}
}
}
}
void dfs_muchii(int node, int dad)
{
vis[node] = 1;
if(dad == -1) level[node] = 1;
else level[node] = level[dad] + 1;
low[node] = level[node];
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(nnode != dad)
{
if(vis[nnode] == 1)
{
if(level[nnode] < low[node])
low[node] = level[nnode];
}
else
{
dfs_muchii(nnode, node);
if(low[nnode] < low[node])
low[node] = low[nnode];
if(level[node] < low[nnode])
{
++ct;
sol.push_back({node, nnode});
}
}
}
}
}
int Find(int val)
{
int root = val, aux;
while(mult[root] != root)
root = mult[root];
while(mult[val] != root)
{
aux = mult[val];
mult[val] = root;
val = aux;
}
return root;
}
void Union(int a, int b)
{
int rootA, rootB;
rootA = Find(a);
rootB = Find(b);
if(sz[rootA] < sz[rootB])
{
sz[rootB] += sz[rootA];
mult[rootA] = rootB;
}
else
{
sz[rootA] += sz[rootB];
mult[rootB] = rootA;
}
}
int bfs_diam(int first, int &last)
{
int diam;
queue < int > bfs;
vector < int > counter, vis;
counter.resize(n + 1, 0);
vis.resize(n + 1, 0);
bfs.push(first);
vis[first] = 1;
counter[first] = 1;
while(!bfs.empty())
{
int node = bfs.front();
bfs.pop();
for(int i = 0; i < G[node].size(); ++i)
{
int nnode = G[node][i];
if(vis[nnode] == 0)
{
vis[nnode] = 1;
counter[nnode] = counter[node] + 1;
bfs.push(nnode);
diam = counter[nnode];
last = nnode;
}
}
}
return diam;
}
public:
int get_n()
{
return n;
}
void solve_bfs()
{
int m, s, x, y;
in >> n >> m >> s;
G.resize(n + 1);
for(int i = 0; i < m; ++i)
{
in >> x >> y;
G[x].push_back(y);
}
bfs(s);
}
void solve_dfs()
{
int m, x, y, ct = 0;
in >> n >> m;
G.resize(n + 1);
vis.resize(n + 1, false);
for(int i = 0; i < m; ++i)
{
in >> x >> y;
G[x].push_back(y);
G[y].push_back(x);
}
for(int i = 1; i <= n; ++i)
if(vis[i] == 0)
{
++ct;
dfs(i);
}
out << ct;
}
void solve_ctc()
{
int m, x, y;
in >> n >> m;
G.resize(n + 1);
ReverseG.resize(n + 1);
sol.resize(n + 1);
vis.resize(n + 1, false);
vis2.resize(n + 1, false);
for(int i = 1; i <= m; ++i)
{
in >> x >> y;
G[x].push_back(y);
ReverseG[y].push_back(x);
}
for(int i = 1; i <= n; ++i)
if(vis[i] == 0)
dfs_ctc_1(i);
ct = 0;
while(!Ctc.empty())
{
int node = Ctc.top();
Ctc.pop();
if(vis2[node] == 0)
{
++ct;
dfs_ctc_2(node);
}
}
out << ct << "\n";
for(int i = 0; i < ct; ++i)
{
for(int j = 0; j < sol[i].size(); ++j)
out << sol[i][j] << " ";
out << "\n";
}
}
void solve_topo()
{
int m, x, y;
in >> n >> m;
G.resize(n + 1);
vis.resize(n + 1, false);
for(int i = 1; i <= m; ++i)
{
in >> x >> y;
G[x].push_back(y);
}
for(int i = 1; i <= n; ++i)
if(vis[i] == 0)
dfs_topo(i);
while(!Topo.empty())
{
int node = Topo.top();
Topo.pop();
out << node << " ";
}
}
void solve_biconex()
{
int m, x, y;
in >> n >> m;
G.resize(n + 1);
sol.resize(n + 1);
level.resize(n + 1, 0);
low.resize(n + 1, 0);
vis.resize(n + 1, false);
for(int i = 1; i <= m; ++i)
{
in >> x >> y;
G[x].push_back(y);
G[y].push_back(x);
}
ct = 0;
dfs_biconex(1, 0);
out << ct << "\n";
for(int i = 0; i < ct; ++i)
{
for(int j = 0; j < sol[i].size(); ++j)
out << sol[i][j] << " ";
out << "\n";
}
}
vector<vector<int>> criticalConnections(int nr, vector<vector<int>>& connections)
{
n = nr;
ct = 0;
G.resize(n + 1);
level.resize(n + 1, 0);
low.resize(n + 1, 0);
vis.resize(n + 1, false);
for(int i = 0; i < connections.size(); ++i)
{
int x = connections[i][0];
int y = connections[i][1];
G[x].push_back(y);
G[y].push_back(x);
}
dfs_muchii(0, -1);
return sol;
}
void solve_disjoint()
{
int m, task, x, y;
in >> n >> m;
mult.resize(n + 1, 0);
sz.resize(n + 1, 1);
for(int i = 1; i <= n; ++i)
mult[i] = i;
for(int i = 0; i < m; ++i)
{
in >> task >> x >> y;
if(task == 1)
{
Union(x, y);
}
else
{
int root1 = Find(x);
int root2 = Find(y);
if(root1 == root2) out << "DA" << "\n";
else out << "NU" << "\n";
}
}
}
void solve_apm()
{
int m;
in >> n >> m;
mult.resize(n + 1, 0);
sz.resize(n + 1, 1);
apm.resize(m + 1);
for(int i = 1; i <= n; ++i)
mult[i] = i;
for(int i = 0; i < m; ++i)
in >> apm[i].left >> apm[i].right >> apm[i].cost;
sort(apm.begin(), apm.end() - 1, comp());
sum = 0;
for(int i = 0; i < m; ++i)
{
int a = apm[i].left;
int b = apm[i].right;
int root_a = Find(a);
int root_b = Find(b);
if(root_a != root_b)
{
Union(a, b);
sol_apm.push_back(make_pair(a, b));
sum += apm[i].cost;
}
}
out << sum << "\n" << sol_apm.size() << "\n";
for(int i = 0; i < sol_apm.size(); ++i)
out << sol_apm[i].first << " " << sol_apm[i].second << "\n";
}
void solve_hakimi()
{
int x;
in >> n;
for(int i = 0; i < n; ++i)
{
in >> x;
grade.push_back(x);
sum += x;
}
if(sum % 2 == 1)
{
out << "NU";
return;
}
for(int i = 0; i < n; ++i)
if(grade[i] > n - 1)
{
out << "NU";
return;
}
sort(grade.begin(), grade.end(), greater <int> ());
while(grade[0])
{
for(int i = 1; i <= grade[0]; ++i)
{
--grade[i];
if(grade[i] < 0)
{
out << "NU";
return;
}
}
grade[0] = 0;
sort(grade.begin(), grade.end(), greater <int> ());
}
out << "DA";
}
void solve_dijkstra()
{
int m, x, y, cost, node, nnode;
in >> n >> m;
G.resize(n + 1);
Cost.resize(n + 1);
dist.resize(n + 1, INF);
vis.resize(n + 1, 0);
for(int i = 1; i <= m; ++i)
{
in >> x >> y >> cost;
G[x].push_back(y);
Cost[x].push_back(cost);
}
dist[1] = 0;
S.push({0, 1});
while(!S.empty())
{
node = S.top().second;
cost = S.top().first;
S.pop();
if(vis[node] == 1) continue;
else vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
{
nnode = G[node][i];
if(dist[nnode] > Cost[node][i] + cost)
{
dist[nnode] = Cost[node][i] + cost;
S.push({dist[nnode], nnode});
}
}
}
for(int i = 2; i <= n; ++i)
if(dist[i] == INF) out << 0 << " ";
else out << dist[i] << " ";
}
void solve_bellman_ford()
{
int m, x, y, cost, source, dest;
in >> n >> m;
G.resize(n + 1);
Cost.resize(n + 1);
dist.resize(n + 1, INF);
vis.resize(n + 1, 0);
nr.resize(n + 1, 0);
for(int i = 1; i <= m; ++i)
{
in >> x >> y >> cost;
G[x].push_back(y);
Cost[x].push_back(cost);
}
dist[1] = 0;
q.push(1);
vis[1] = 1;
while(!q.empty())
{
source = q.front();
q.pop();
vis[source] = 0;
nr[source]++;
if(nr[source] == n)
{
out << "Ciclu negativ!";
return;
}
for(int i = 0; i < G[source].size(); ++i)
{
dest = G[source][i];
cost = Cost[source][i];
if(dist[source] + cost < dist[dest])
{
dist[dest] = dist[source] + cost;
if(vis[dest] == 0)
{
vis[dest] = 1;
q.push(dest);
}
}
}
}
for(int i = 2; i <= n; ++i)
out << dist[i] << " ";
}
void solve_roy_floyd()
{
int x;
vector < vector < int > > Matrix;
in >> n;
Matrix.resize(n + 1);
for(int i = 1; i <= n; ++i)
Matrix[i].push_back(0);
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= n; ++j)
Matrix[i].push_back(INF);
Matrix[i][i] = 0;
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
in >> x;
if(x) Matrix[i][j] = x;
}
for(int k = 1; k <= n; ++k)
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
if((1LL * Matrix[i][k] + 1LL * Matrix[k][j]) < Matrix[i][j])
Matrix[i][j] = Matrix[i][k] + Matrix[k][j];
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= n; ++j)
out << Matrix[i][j] << " ";
out << "\n";
}
}
int bfsFlow(vector < int > &parent, vector < vector < int > > &rez, vector < vector < int > > &adj)
{
queue < int > bfs;
parent.assign(n + 1, -1);
bfs.push(1);
parent[1] = 0;
while(!bfs.empty())
{
int node = bfs.front();
bfs.pop();
for(int i = 0; i < adj[node].size(); ++i)
{
int nnode = adj[node][i];
if(parent[nnode] == -1 && rez[node][nnode])
{
parent[nnode] = node;
bfs.push(nnode);
}
}
}
return parent[n];
}
int maxFlow()
{
int m, x, y, c, flow = 0;
vector < int > parent;
vector < vector < int > > rez;
vector < vector < int > > adj;
in >> n >> m;
G.resize(n + 1);
Cost.resize(n + 1);
rez.resize(n + 1);
adj.resize(n + 1);
for(int i = 1; i <= n; ++i)
rez[i].resize(n + 1, 0);
for(int i = 1; i <= m; ++i)
{
in >> x >> y >> c;
G[x].push_back(y);
Cost[x].push_back(c);
}
for(int i = 1; i <= n; ++i)
for(int j = 0; j < G[i].size(); ++j)
{
int node = G[i][j];
rez[i][node] = Cost[i][j];
}
for(int i = 1; i <= n; ++i)
for(int j = 0; j < G[i].size(); ++j)
{
int node = G[i][j];
adj[i].push_back(node);
adj[node].push_back(i);
}
while(bfsFlow(parent, rez, adj) != -1)
{
for(int i = 0; i < adj[n].size(); ++i)
{
int Node = adj[n][i];
if(Node != -1)
{
int node = Node;
int ant;
int new_flow = rez[node][n];
while(node != 1)
{
ant = parent[node];
new_flow = min(new_flow, rez[ant][node]);
node = ant;
}
node = Node;
rez[node][n] -= new_flow;
rez[n][node] += new_flow;
while(node != 1)
{
ant = parent[node];
rez[ant][node] -= new_flow;
rez[node][ant] += new_flow;
node = ant;
}
flow += new_flow;
}
}
}
return flow;
}
int solve_diam()
{
int x, y, last, llast;
in >> n;
G.resize(n + 1);
for(int i = 1; i <= n; ++i)
{
in >> x >> y;
G[x].push_back(y);
G[y].push_back(x);
}
int val = bfs_diam(1, last);
int diam = bfs_diam(last, llast);
return diam;
}
void euler(int node)
{
while(E[node].size())
{
int nnode = E[node].back().first;
int nr = E[node].back().second;
E[node].pop_back();
if(f[nr] == 0)
{
f[nr] = 1;
euler(nnode);
}
}
sol_euler.push_back(node);
}
vector < int > solve_euler()
{
int m, x, y;
in >> n >> m;
f.resize(m + 5, 0);
E.resize(n + 1);
for(int i = 1; i <= m; ++i)
{
in >> x >> y;
E[x].push_back({y, i});
E[y].push_back({x, i});
}
for(int i = 1; i <= n; ++i)
if(E[i].size() % 2 == 1)
{
sol_euler.push_back(-1);
return sol_euler;
}
euler(1);
sol_euler.pop_back();
return sol_euler;
}
int hamilton()
{
int m, x, y, c, sol = INF;
in >> n >> m;
vector < vector < pair <int, int > > > Ad;
Ad.resize(n + 1);
for(int i = 0; i < m; ++i)
{
in >> x >> y >> c;
Ad[x].push_back(make_pair(y, c));
}
int aux = (1 << n);
int cost[aux][n];
for(int i = 0; i < aux; ++i)
for(int j = 0; j < n; ++j)
cost[i][j] = INF;
cost[1][0] = 0;
for(int i = 0; i < aux; ++i)
for(int j = 0; j < n; ++j)
if((i & (1 << j)))
for(int k = 0; k < Ad[j].size(); ++k)
if(i & (1 << Ad[j][k].first))
cost[i][j] = min(cost[i][j], cost[i ^ (1 << j)][Ad[j][k].first] + Ad[j][k].second);
for(int i = 0; i < Ad[0].size(); ++i)
sol = min(sol, cost[aux - 1][Ad[0][i].first] + Ad[0][i].second);
return sol;
}
int dfsCuplaj(int node, vector<int> &vis, vector<int> &left, vector<int> &right)
{
if(vis[node] == 1) return 0;
vis[node] = 1;
for(int i = 0; i < G[node].size(); ++i)
if (!right[G[node][i]] || dfsCuplaj(right[G[node][i]], vis, left, right))
{
right[G[node][i]] = node;
left[node] = G[node][i];
return 1;
}
return 0;
}
vector < pair < int, int > > cuplaj()
{
int m, e, x, y;
vector < pair < int, int > > sol;
in >> n >> m >> e;
G.resize(100001);
vis.resize(n + 1, 0);
vector < int > left(n + 1, 0), right(n + 1, 0);
for(int i = 0; i < e; ++i)
{
in >> x >> y;
G[x].push_back(y);
}
bool ok = 1;
while(ok == 1)
{
ok = 0;
for(int i = 0; i <= n; ++i)
vis[i] = 0;
for(int i = 1; i <= n; ++i)
if(left[i] == 0 && dfsCuplaj(i, vis, left, right) == 1)
ok = 1;
}
for (int i = 1; i <= n; ++i)
if (left[i] != 0)
sol.push_back(make_pair(i, left[i]));
return sol;
}
};
int main()
{
graph G;
vector < pair < int, int > > sol;
sol = G.cuplaj();
out << sol.size() << "\n";
for(int i = 0; i < sol.size(); ++i)
out << sol[i].first << " " << sol[i].second << "\n";
return 0;
}