#include<bits/stdc++.h>
using namespace std;
const int inf = (1e9);
const int dim = (1e5);
char buff[dim + 5];
int pos = 0;
int cnt[7505];
void read(int &nr) { //functie de parsare
int semn = 1;
nr = 0;
while (!isdigit(buff[pos])) {
if (buff[pos] == '-') semn = -1;
pos++;
if (pos == dim) {
pos = 0;
fread(buff, 1, dim, stdin);
}
}
while (isdigit(buff[pos])) {
nr = nr * 10 + buff[pos] - '0';
pos++;
if (pos == dim) {
pos = 0;
fread(buff, 1, dim, stdin);
}
}
nr *= semn;
}
bool cmp(pair<int, pair<int, int> > a,
pair<int, pair<int, int> > b) { //criteriu de comparare pentru muchii (in esenta pentru Kruskal. Acest criteriu sorteaza muchiile dupa cost
if (a.second.second == b.second.second)
return make_pair(a.first, a.second.first) < make_pair(b.first, b.second.first);
return a.second.second < b.second.second;
}
class DSU { //clasa de DSU ce suporta operatii de Union si GetRoot
private:
int m_nodes;
vector<int> t;
public:
DSU(int n) {
m_nodes = n;
t.resize(n + 5);
for (int i = 0; i <= n; i++)
t[i] = -1;
}
inline int getRoot(int x) {
int y = x;
while (t[y] > 0) y = t[y];
int root = y;
y = x;
while (y != root) {
int aux = t[y];
t[y] = root;
y = aux;
}
return root;
}
inline void unite(int x, int y) {
if (t[x] < t[y]) {
t[x] += t[y];
t[y] = x;
} else {
t[y] += t[x];
t[x] = y;
}
}
};
class Graph {
private:
int m_nodes;
vector<vector<pair<int, int>>>
m_adjList;//lista de adiacenta pentru fiecare nod sub forma {vecin,cost}
vector<pair<int, pair<int, int>>>
m_edges;//lista cu toate muchiile sub forma {nod1, {nod2, cost} }
vector<vector<int>> c, f; //capacitatile si fluxurile, care vor fi retinute doar la nevoie pentru a nu incarca memoria
bool m_areLabeled;
//Ceva care sa retine daca e sau nu etichetat
bool m_isDirected;
//Ceva care sa retina daca e sau nu orientat
struct tip { //Structura in care nodurile sunt ordonate dupa distanta (pentru Dijkstra)
int nod;
long long cost;
bool operator<(const tip &other) const {
return cost > other.cost;
}
};
void topSort(vector<int> &solution, vector<bool> &seen, int node, int fat); //DFS pentru Sortare Topologica
void
tarjan(vector<bool> &inStack, vector<int> &st, vector<int> &lvl, vector<int> &low, vector<vector<int>> &solution,
int node, int fat, int ¤tLevel); //DFS pentru Tarjan
void bicoDFS(vector<int> &t, vector<vector<int>> &solution, vector<int> &st, vector<bool> &seen, vector<int> &lvl,
vector<int> &low, int node, int fat, int currentLevel); //DFS pentru Biconexe
void depthDFS(vector<int> &d, int node); //DFS de gasit adancimile (folosit la diametru)
inline bool bfs(vector<int> &tt, int source, int destination); //BFS pentru flux
int getPath(vector<int> &l, vector<int> &r, vector<bool> &seen, int node); //Functie de gasire a lanturilor alternante pentru cuplajul maxim in Graf Bipartit
public:
Graph(int nodes, bool areLabeled, bool isDirected = false, bool needFlow = false);
/**
* constructor ce primeste parametrii:
Nr de noduri
Graful e sau nu etichetat
Graful e sau nu orientat
Avem nevoie sa retinem capaciatile si fluxurile de pe muchii
**/
void addCap(int from, int to, int cap); //adaugam o capacitate pe o muchie
void addEdge(int from, int to, int cost = 0); //adaugam o muchie de forma (nod1,nod2,cost), unde costul poate lipsi si este implicit 0
vector<long long> dijkstra(int source); //Functie pentru algoritmul lui Dijkstra. Returneaza distantele de la un nod primit ca parametru la toate celelalte
vector<int> bfs(int source); //BFS, returneaza distante (ca numar de muchii) de la un nod primit ca parametru la toate celelalte
void dfs(vector<bool> &m_visited, int node); //DFS, intoarce prin referinta vectorul de vizitati
int getCC(); //Numarul de componente conexe
vector<vector<int>> getSCCs(); //Returneaza componentele tare conexe
vector<vector<int>> getBiconected(); //Returneaza Componentele Biconexe
vector<pair<int, int>> getCriticalEdges(); //Returneaza un vector de Muchii Critice
vector<int> getTopSort(); //Returneaza un vector ce reprezinta o Sortare Topologica valida
static bool HavelHakimi(vector<int> degSequence); //Havel Hakimi, intoarce True/False daca o lista de grade primita ca input poate forma, sau nu, un graf
pair<long long, vector<pair<int, int> > >
getMST(); //APM cu Kruskal. Intoarce un pair {cost,muchii}, unde cost este costul APM-ului iar muchii este un vector de contine muchiile APM-ului
pair<int, vector<long long> > bellmanFord(int source); //Bellmanford, intoarce un errorcode ce semnifica daca algoritmul s-a putut efectua
// sau nu si in caz afirmativ vectorul de distante de la un nod primit ca input la toate celelalte
vector<vector<int>> royFloyd(); //RoyFloyd. Intoarce matricea de distante intre oricare 2 noduri din graf
vector<int> getDepths(int root); //getDepths. Intoarce un vector cu adancimea fiecarui nod daca inradacinam arborele intr-un nod dat ca input
int getTreeDiam(); //Intoarce un numar intreg ce reprezinta diametrul unui arbore
int getMaxFlow(int source, int destination); //Intoarce un numar intreg ce reprezinta Fluxul Maxim / Taietura Minima
pair<int, vector<int> >getEulerCycle(); //Pe prima pozitie avem 1 daca exista ciclu, altfel -1, iar pe a doua avem ciclul, daca exista, altfel un vector vid
//Pentru ca algoritmul sa aiba randament mai bun, folositi indicii muchiilor drept costuri (memorie + timp)
pair<int, vector<pair<int, int> > > getBipartiteMatching(int n, int m);
//Se primesc lungimile celor 2 partitii ale unui graf bipartit si se returneaza cardinalul cuplajului maximal si muchiile acestuia
int getHamiltonCycleCost();
//Returneaza costul ciclului hamiltonian minim din graful apelant
};
int Graph::getHamiltonCycleCost() {
/**
* Se foloseste o dinamica pe stari exponentiale dp[mask][last_node], unde mask codeaza nodurile vizitate, iar last_node ultimul nod vizitat
* Complexitate O(2^n*n^2)
*/
int lmask = (1 << m_nodes);
vector<vector<int> > dp;
dp.resize(lmask + 5);
for (int i = 0; i <= lmask; i++) {
dp[i].resize(m_nodes);
fill(dp[i].begin(), dp[i].end(), inf);
}
dp[1][0] = 0;
for (int mask = 1; mask < lmask; mask++) {
for (int j = 0; j < m_nodes; j++) {
if (dp[mask][j] == inf) continue;
for (auto it: m_adjList[j + 1]) {
int nxt = it.first - 1;
int cost = it.second;
if ((1 << nxt) & mask) continue;
dp[mask | (1 << nxt)][nxt] = min(dp[mask | (1 << nxt)][nxt], dp[mask][j] + cost);
}
}
}
int sol = inf;
vector<pair<int, int> > candidates;
for (int i = 2; i <= m_nodes; i++) {
for (auto it: m_adjList[i])
if (it.first == 1) {
candidates.push_back(make_pair(i, it.second));
break;
}
}
for (auto it: candidates) {
int nxt = it.first - 1;
int cost = it.second;
sol = min(sol, dp[lmask - 1][nxt] + cost);
}
return sol;
}
int Graph::getPath(vector<int> &l, vector<int> &r, vector<bool> &seen, int node) {
/*
* Functie auxiliara pentru cuplaj. Incearca gasirea unui nou lant alternant sau extinderea unuia existent
*/
if (seen[node]) return 0;
seen[node] = 1;
for (auto it: m_adjList[node]) {
if (!r[it.first]) {
l[node] = it.first;
r[it.first] = node;
return 1;
}
}
for (auto it: m_adjList[node]) {
if (getPath(l, r, seen, r[it.first])) {
l[node] = it.first;
r[it.first] = node;
return 1;
}
}
return 0;
}
pair<int, vector<pair<int, int> > > Graph::getBipartiteMatching(int n, int m) {
/**
* Foloseste Algoritmul Hopcroft Karp bazat pe gasirea lanturilor de augmentare.
* COmplexitate O(E sqrt(V))
*/
int augment = 1;
vector<bool> seen(m_nodes + 5, false);
vector<int> l(m_nodes + 5, 0);
vector<int> r(m_nodes + 5, 0);
while (augment) {
augment = 0;
for (int i = 1; i <= m_nodes; i++)
seen[i] = false;
for (int i = 1; i <= n; i++)
if (!l[i]) augment |= getPath(l, r, seen, i);
}
int matching = 0;
vector<pair<int, int> > solution;
for (int i = 1; i <= m_nodes; i++)
if (l[i])
solution.push_back(make_pair(i, l[i])), matching++;
return make_pair(matching, solution);
}
void Graph::addCap(int from, int to, int cap) {
c[from][to] = cap;
}
void Graph::topSort(vector<int> &solution, vector<bool> &seen, int node, int fat) {
/**
* DFS tipic de sortare topologica
* Complexitate: O(n+m)
*/
seen[node] = 1;
for (auto it: m_adjList[node]) {
if (seen[it.first]) continue;
if (it.first == fat) continue;
topSort(solution, seen, it.first, node);
}
solution.push_back(node);
}
void Graph::tarjan(vector<bool> &inStack, vector<int> &st, vector<int> &lvl, vector<int> &low,
vector<vector<int>> &solution,
int node, int fat, int ¤tLevel) {
/**
* Algoritmul Tarjan pentru detectarea componentelor tare conexe, bazat pe nodul minim in care se poate intoarce orice nod.
* Pentru acesta se utilizeaza stiva si nu se utilizeza graful transpus
* Complexitate: O(n+m)
*/
low[node] = lvl[node] = ++currentLevel;
st.push_back(node);
inStack[node] = 1;
for (auto it: m_adjList[node]) {
if (!lvl[it.first]) {
tarjan(inStack, st, lvl, low, solution, it.first, node, currentLevel);
low[node] = min(low[node], low[it.first]);
} else if (inStack[it.first]) {
low[node] = min(low[node], low[it.first]);
}
}
if (low[node] == lvl[node]) {
solution.push_back({});
int x = -1;
while (x != node) {
x = st.back();
solution.back().push_back(x);
inStack[x] = 0;
st.pop_back();
}
}
}
void
Graph::bicoDFS(vector<int> &t, vector<vector<int>> &solution, vector<int> &st, vector<bool> &seen, vector<int> &lvl,
vector<int> &low, int node, int fat, int currentLevel) {
/**
* Algoritmul de determinare a componentelor biconexe
* Acesta utilizeaza o logica asemanatoare cu algoritmul pentru componente tare conexe, bazat pe nodul de adancime minima la care se intoarce orice nod
* Complexitate: O(n+m)
*/
st.push_back(node);
low[node] = lvl[node] = currentLevel;
seen[node] = 1;
for (auto it: m_adjList[node]) {
if (it.first == fat) continue;
if (seen[it.first]) {
low[node] = min(low[node], lvl[it.first]);
continue;
}
t[it.first] = node;
bicoDFS(t, solution, st, seen, lvl, low, it.first, node, currentLevel + 1);
low[node] = min(low[node], low[it.first]);
if (low[it.first] >= lvl[node]) {
solution.push_back({});
int x = 0;
do {
x = st.back();
solution.back().push_back(x);
st.pop_back();
} while (x != it.first);
solution.back().push_back(node);
// exit(0);
}
}
}
void Graph::depthDFS(vector<int> &d, int node) {
/**
* DFS.
* Complexitate: O(n+m)
*/
for (auto it: m_adjList[node]) {
if (d[it.first]) continue;
d[it.first] = 1 + d[node];
depthDFS(d, it.first);
}
}
bool Graph::bfs(vector<int> &tt, int source, int destination) {
/**
* BFS folosit la algoritmul de flux.
* Intoarce prin referinta un vector de tati aferent parcurgerii
* Complexitate: O(n+m)
*/
vector<bool> seen(m_nodes + 5, false);
deque<int> q;
q.push_back(source);
seen[source] = 1;
while (!q.empty()) {
int nod = q.front();
q.pop_front();
for (auto it: m_adjList[nod]) {
if (!seen[it.first] && f[nod][it.first] < c[nod][it.first]) {
tt[it.first] = nod;
seen[it.first] = 1;
q.push_back(it.first);
}
}
}
return seen[destination];
}
Graph::Graph(int nodes, bool areLabeled, bool isDirected, bool needFlow) { //constructor
m_nodes = nodes;
m_areLabeled = areLabeled;
m_adjList.resize(nodes + 5);
m_isDirected = isDirected;
if (needFlow) {
c.resize(m_nodes + 5);
for (int i = 0; i <= m_nodes; i++)
c[i].resize(m_nodes + 5);
f.resize(m_nodes + 5);
for (int i = 0; i <= m_nodes; i++)
f[i].resize(m_nodes + 5);
}
//t.resize(nodes + 5);
//for (int i = 0; i <= nodes; i++)
// t[i] = -1;
}
void Graph::addEdge(int from, int to, int cost) {
m_adjList[from].push_back(make_pair(to, cost));
if (m_isDirected || from <= to)
m_edges.push_back(make_pair(from, make_pair(to, cost)));
}
vector<long long> Graph::dijkstra(int source) {
/**
* Algoritmul lui Dijkstra folosindu-se heapuri binare
* Complexitate: O((n+m)*log n)
* Optimizabil la: O(m + nlog n) folosind heapuri fibonacci
*/
priority_queue<tip> q;
const long long inf = 10000000000LL;
vector<long long> dp(m_nodes + 5, inf);
dp[source] = 0;
q.push({source, 0LL});
while (!q.empty()) {
int nod = q.top().nod;
long long cost = q.top().cost;
q.pop();
if (cost > dp[nod]) continue;
for (auto it: m_adjList[nod]) {
long long z = cost + 1LL * it.second;
if (z < dp[it.first]) {
dp[it.first] = z;
q.push({it.first, dp[it.first]});
}
}
}
return dp;
}
vector<int> Graph::bfs(int source) {
/**
* BFS.
* Complexitate: O(n+m)
*/
deque<int> q;
vector<int> distances(m_nodes + 5, -1);
distances[source] = 0;
q.push_back(source);
while (!q.empty()) {
int current = q.front();
q.pop_front();
for (auto it: m_adjList[current]) {
if (distances[it.first] == -1) {
distances[it.first] = 1 + distances[current];
q.push_back(it.first);
}
}
}
return distances;
}
void Graph::dfs(vector<bool> &m_visited, int node) {
m_visited[node] = 1;
for (auto it: m_adjList[node]) {
if (m_visited[it.first]) continue;
dfs(m_visited, it.first);
}
}
bool Graph::HavelHakimi(vector<int> degSequence) {
/**
* Havel Hakimi. Bazat pe un algoritm de tip greedy de matching a nodurilor
* Complexitate: O(n^2) cu interclasare in loc de sortari ulterioare
*/
sort(degSequence.begin(), degSequence.end());
reverse(degSequence.begin(), degSequence.end());
int sz = (int) degSequence.size();
for (int i = 0; i < sz; i++) {
if (!degSequence[i]) break;
for (int j = i + 1; j <= i + degSequence[i]; j++) {
if (!degSequence[j]) return 0;
if (j >= sz) return 0;
degSequence[j]--;
}
int p = i + 1;
int q = i + degSequence[i] + 1;
vector<int> aux;
while (p < i + degSequence[i] + 1 && q < sz) {
if (degSequence[p] > degSequence[q])
aux.push_back(degSequence[p]), p++;
else
aux.push_back(degSequence[q]), q++;
}
while (q < sz) aux.push_back(degSequence[q]), q++;
while (p < i + degSequence[i] + 1) aux.push_back(degSequence[p]), p++;
for (int j = i + 1; j < sz; j++)
degSequence[j] = aux[j - i - 1];
degSequence[i] = 0;
// for(auto it:degSequence)
// printf("%d ",it);
// printf("\n");
}
return 1;
}
/**
* Functii ce returneaza rezultatele fiecarui algoritm
*
*/
int Graph::getCC() {
vector<bool> m_visited(m_nodes + 5, 0);
int ans = 0;
for (int i = 1; i <= m_nodes; i++)
if (!m_visited[i]) dfs(m_visited, i), ans++;
return ans;
}
vector<vector<int>> Graph::getSCCs() {
vector<vector<int>> solution;
vector<int> lvl(m_nodes + 5, 0);
vector<int> low(m_nodes + 5, 0);
vector<int> st;
vector<bool> inStack(m_nodes + 5, 0);
int currentLevel = 0;
for (int i = 1; i <= m_nodes; i++)
if (!lvl[i])
tarjan(inStack, st, lvl, low, solution, i, 0, currentLevel);
return solution;
}
vector<vector<int>> Graph::getBiconected() {
vector<vector<int>> solution;
vector<int> lvl(m_nodes + 5, 0);
vector<int> low(m_nodes + 5, 0);
vector<int> st;
vector<bool> seen(m_nodes + 5, 0);
vector<int> t(m_nodes + 5, 0);
bicoDFS(t, solution, st, seen, lvl, low, 1, 0, 1);
return solution;
}
vector<pair<int, int>> Graph::getCriticalEdges() {
/**
* Muchiile critice sunt cele intre punctele de articulatie si fii sai care nu fac parte din aceeasi componenta biconexa
*/
vector<vector<int>> solution;
vector<int> lvl(m_nodes + 5, 0);
vector<int> low(m_nodes + 5, 0);
vector<int> st;
vector<bool> seen(m_nodes + 5, 0);
vector<int> t(m_nodes + 5, 0);
bicoDFS(t, solution, st, seen, lvl, low, 1, 0, 1);
vector<pair<int, int>> criticals;
for (auto it: m_edges) {
int x = it.first;
int y = it.second.first;
if (x == y) continue;
if (lvl[x] < lvl[y]) swap(x,y);
if (t[x] == y && low[x] > lvl[y])
criticals.push_back(make_pair(x, y));
}
return criticals;
}
vector<int> Graph::getTopSort() {
vector<int> solution;
vector<bool> seen(m_nodes + 5, 0);
for (int i = 1; i <= m_nodes; i++)
if (!seen[i])
topSort(solution, seen, i, 0);
reverse(solution.begin(), solution.end());
return solution;
}
pair<long long, vector<pair<int, int> > >
Graph::getMST() {
/**
* Folosim Algoritmul Kruskal pentru determinarea APM-ului
* O(m log m + m log* n) folosind DSU cu euristicile de Road Compression si Rank Union, log* = inversul functiei Ackermann, aproximabil la O(1)
*/
sort(m_edges.begin(), m_edges.end(), cmp);
vector<pair<int, int>> sol;
DSU disjointSet(m_nodes);
long long cost = 0;
for (auto it: m_edges) {
int x = it.first;
int y = it.second.first;
int z = it.second.second;
int rx = disjointSet.getRoot(x);
int ry = disjointSet.getRoot(y);
if (rx != ry) {
cost += 1LL * z;
disjointSet.unite(rx, ry);
sol.push_back(make_pair(x, y));
}
}
return make_pair(cost, sol);
}
pair<int, vector<long long> > Graph::bellmanFord(int source) {
/**
* Algoritmul BellmanFord are o utilitate similara cu Dijkstra
* Pentru el utilizam o coada in care retinem nodurile ce pot actualiza solutia
* Acesta poate fi utilizat si pentru detectia ciclurilor negative
* Complexitatea teoretica este de O(n*m), insa se comporta bine in practica
*/
deque<int> q;
vector<bool> inQueue(m_nodes + 5, 0);
vector<int> seen(m_nodes + 5, 0);
q.push_back(source);
inQueue[source] = seen[source] = 1;
vector<long long> dp(m_nodes + 5, 1LL * INT_MAX);
dp[source] = 0;
while (!q.empty()) {
int node = q.front();
for (auto it: m_adjList[node]) {
if (dp[it.first] < dp[node] + it.second) continue;
dp[it.first] = dp[node] + it.second;
if (!inQueue[it.first]) {
q.push_back(it.first);
inQueue[it.first] = 1;
}
seen[it.first]++;
if (seen[it.first] == (m_nodes + 1))
return make_pair(-1, dp);
}
inQueue[node] = 0;
q.pop_front();
}
return make_pair(0, dp);
}
vector<vector<int>> Graph::royFloyd() {
/**
* Algoritmul Roy Floyd calculeaza distantele intre oricare 2 noduri din graf
* Complexitate: O(n^3)
*/
vector<vector<int>> m;
m.resize(m_nodes + 5);
for (int i = 0; i <= m_nodes; i++)
m[i].resize(m_nodes + 5);
for (auto it: m_edges) {
int x = it.first;
int y = it.second.first;
m[x][y] = it.second.second;
}
for (int i = 1; i <= m_nodes; i++) {
for (int j = 1; j <= m_nodes; j++) {
if (i == j) continue;
if (!m[i][j]) m[i][j] = inf;
}
}
for (int k = 1; k <= m_nodes; k++) {
for (int i = 1; i <= m_nodes; i++)
for (int j = 1; j <= m_nodes; j++) {
if (m[i][k] + m[k][j] < m[i][j]) m[i][j] = m[i][k] + m[k][j];
}
}
return m;
}
vector<int> Graph::getDepths(int root) {
vector<int> depths(m_nodes + 5, 0);
depths[root] = 1;
depthDFS(depths, root);
return depths;
}
int Graph::getTreeDiam() {
/**
* Diametrul unui arbore afla folosind 2 parcurgeri DFS din 2 noduri distincte
* Complexitate O(n+m)
*/
vector<int> depth = getDepths(1);
int best = 1;
for (int i = 1; i <= m_nodes; i++)
if (depth[i] > depth[best]) best = i;
depth = getDepths(best);
for (int i = 1; i <= m_nodes; i++)
if (depth[i] > depth[best]) best = i;
return depth[best];
}
int Graph::getMaxFlow(int source, int destination) {
/**
* Am utilizat algoritmul Edmonds Karp pentru aflarea fluxului maxim
* Acesta gaseste drumuri de crestere pe care le satureaza
* Complexitatea teoretica este de O(n*m^2), insa se comporta mai bine in practica
*
*/
vector<int> tt;
tt.resize(m_nodes + 5);
int sol = 0;
while (bfs(tt, source, destination)) {
for (auto it: m_adjList[destination]) {
int x = it.first;
int flow = c[x][destination] - f[x][destination];
for (int i = x; i != source; i = tt[i])
flow = min(flow, c[tt[i]][i] - f[tt[i]][i]);
f[x][destination] += flow;
f[destination][x] -= flow;
for (int i = x; i != source; i = tt[i]) {
f[tt[i]][i] += flow;
f[i][tt[i]] -= flow;
}
sol += flow;
}
}
return sol;
}
pair<int, vector<int> > Graph::getEulerCycle() {
/**
* Conditia necesara si suficienta pentru existenta unui ciclu eulerian intr-un graf este ca toate nodurile sa aiba grad par
* Daca graful nostru indeplineste aceasta conditie, ciclul efectiv poate fi aflat folosind o parcugere DFS
* COmplexitate: O(n+m), in cazul in care pentru fiecare muchie retinem indicele sau pentru a marca faptul ca a fost vizitata (eu am retinut acest lucru in campul cost)
* Complexitate mai mare cu un factor de log n pentru rezolvarile cu set-uri/ map-uri
*/
vector<int> aux;
for (int i = 1; i <= m_nodes; i++)
if ((int) m_adjList[i].size() % 2) return make_pair(-1, aux);
// for(int i=1;i<=m_nodes;i++)
// sort(m_adjList[i].begin(),m_adjList[i].end());
vector<int> solution;
int m = (int) m_edges.size();
int *st;
int vf = 0;
//cerr<<m<<'\n';
st = new int[m + 5];
vector<bool> seen(m + 5, false);
// exit(0);
st[++vf] = 1;
while (vf) {
int node = st[vf];
//vf--;
while (!m_adjList[node].empty() && seen[m_adjList[node].back().second]) m_adjList[node].pop_back();
if (m_adjList[node].empty()) {
solution.push_back(node);
vf--;
continue;
}
pair<int, int> adj = m_adjList[node].back();
seen[m_adjList[node].back().second] = 1;
// m_adjList[adj.first].erase( lower_bound(m_adjList[adj.first].begin(),m_adjList[adj.first].end(),make_pair(node,adj.second)));
st[++vf] = adj.first;
}
delete[] st;
return make_pair(1, solution);
}
int main() {
freopen("hamilton.in", "r", stdin);
freopen("hamilton.out", "w", stdout);
int n, m, x, y, z;
scanf("%d%d", &n, &m);
Graph G(n, 1, 1, 0);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &x, &y, &z);
x++;
y++;
G.addEdge(x, y, z);
}
int sol = G.getHamiltonCycleCost();
if (sol != (1e9))
printf("%d\n", sol);
else
printf("Nu exista solutie\n");
return 0;
}