/// SORA ANDREEA-IOANA, GRUPA 234
#include <iostream>
#include <fstream>
#include <queue>
#include <vector>
#include <stack>
#include <bits/stdc++.h>
#include <climits>
using namespace std;
class Graf
{
protected:
int nrN, nrM; /// Numar noduri, numar muchii
vector<vector<int>> listaAd; /// lista de adiacenta graf
public:
Graf(int const, int const, vector<vector<int>>);
Graf();
Graf(const Graf& graf);
~Graf();
int get_noduri() const;
int get_muchii() const;
vector<vector<int>> get_lista() const;
vector<int>
BFS(int); /// returneaza vector de distante minime, plecand din nodul de start
int nr_componente_conexe();
vector<int> sortareTopologica(vector<int>); /// returneaza sortarea topologica, primind
/// argument un vector de grade interne
bool HavelHakimi(vector<int>&, int); /// false - nu exista graf / true - exista graf
vector<vector<int>>
CTC(vector<vector<int>>); /// returneaza componentele tare conexe, primind argument
/// lista de adiacenta a grafului transpus
vector<pair<int, int>>
muchiiCritice(); /// returneaza vector cu muchiile critice dintr-un graf
/// Paduri de multimi disjuncte
int Find(int, vector<int>); /// gaseste tatal unui nod
void Union(int, int, vector<int>&, vector<int>&); /// uneste doua noduri
vector<vector<int>> royFloyd(); /// returneaza matricea drumurilor minime
int diametruArbore();
int fluxMaxim();
private:
void DFS(int, vector<int>&);
void DFS_MuchiiCritice(int, int, vector<int>&, vector<int>&, vector<int>&,
vector<pair<int, int>>&);
void DFS1_CTC_Kosaraju(int, vector<int>&, stack<int>&); /// primul DFS pe graf
void DFS2_CTC_Kosaraju(int, vector<int>&, vector<vector<int>>,
vector<int>&); /// al doilea DFS pe graful transpus
bool bfsFlux(vector<int>&, vector<vector<int>>&); /// bfs pentru problema flux maxim -
/// aflarea drumurilor de ameliorare
};
Graf ::Graf(int const nrNoduri, int const nrMuchii, vector<vector<int>> lista)
{
nrN = nrNoduri;
nrM = nrMuchii;
listaAd = lista;
}
Graf ::Graf()
{
nrN = 0;
nrM = 0;
vector<vector<int>> lista(nrN + 1);
listaAd = lista;
}
Graf ::Graf(const Graf& graf)
{
nrN = graf.nrN;
nrM = graf.nrM;
listaAd = graf.listaAd;
}
Graf ::~Graf()
{
nrN = 0;
nrM = 0;
listaAd.clear();
}
int Graf ::get_noduri() const
{
return nrN;
}
int Graf ::get_muchii() const
{
return nrM;
}
vector<vector<int>> Graf ::get_lista() const
{
return listaAd;
}
/// BFS - O(N + M)
vector<int> Graf ::BFS(int start)
{
vector<int> cost(nrN + 1, -1);
int S;
queue<int> coada;
coada.push(start); /// adaugam in coada nodul de start
cost[start] = 0; /// costul pentru nodul de start este 0
while(!coada.empty()) /// cat timp avem elemente in coada
{
S = coada.front();
for(int i = 0; i < listaAd[S].size(); i++) /// parcurgem vecinii nodului curent
{
int nod_curent = listaAd[S][i];
if(cost[nod_curent] == -1) /// daca e nevizitat
{
cost[nod_curent] = cost[S] + 1; /// actualizam costul
coada.push(nod_curent); /// adaugam in coada vecinul
}
}
coada.pop(); /// eliminam nodul curent din coada
}
return cost;
}
/// DFS - O(N + M)
void Graf ::DFS(int nod, vector<int>& viz)
{
viz[nod] = 1; /// vizitam nodul curent
for(int i = 0; i < listaAd[nod].size(); i++) /// parcurgem vecinii nodului curent
{
int nod_curent = listaAd[nod][i];
if(viz[nod_curent] == 0) /// daca vecinul este nevizitat
DFS(nod_curent, viz);
}
}
int Graf ::nr_componente_conexe()
{
vector<int> viz(nrN + 1, 0); /// initializam vectorul viz
int nrCC = 0; /// numar componente conexe
for(int i = 1; i <= nrN; i++)
{
if(viz[i] == 0) /// daca nodul este nevizitat
{
DFS(i, viz);
nrCC++;
}
}
return nrCC;
}
/// SortareTopologica - O(N + M)
vector<int> Graf ::sortareTopologica(vector<int> grade)
{
queue<int> coada;
vector<int> rez;
for(int i = 1; i <= nrN; i++)
if(grade[i] == 0)
coada.push(i); /// adaugam in coada nodurile cu gradul intern 0
while(!coada.empty())
{
int nod_curent = coada.front();
rez.push_back(nod_curent);
coada.pop();
for(int i = 0; i < listaAd[nod_curent].size(); i++) /// parcurgem vecinii
{
int vecin = listaAd[nod_curent][i];
grade[vecin]--; /// scadem 1 tuturor gradelor nodurilor adiacente
if(grade[vecin] ==
0) /// daca gradul intern a devenit 0, il adaugam in coada
coada.push(vecin);
}
}
return rez;
}
/// HavelHakimi - O(N^2logN)
bool Graf ::HavelHakimi(vector<int>& v, int n)
{
bool ok = true;
while(ok == true)
{
sort(v.begin(), v.end(),
greater<int>()); /// sortam descrescator gradele nodurilor
if(v[0] == 0) /// daca toate gradele sunt egale cu 0 - primul element 0 in
/// ordine descrescatoare
break; /// exista graf
int nr = v[0]; /// extragem primul grad
v.erase(v.begin());
if(nr > v.size()) /// daca gradul este mai mare decat numarul de elemente
/// ramase
{
ok = false; /// nu exista graf
break;
}
for(int i = 0; i < nr; i++) /// parcurgem urmatoarele nr elemente
{
v[i] = v[i] - 1; /// scadem 1 din grad
if(v[i] < 0) /// daca gradul a devenit -1
{
ok = false; /// nu exista graf
break;
}
}
}
return ok;
}
/// Ctc - O(N + M)
void Graf ::DFS1_CTC_Kosaraju(int nod, vector<int>& vizitat, stack<int>& stiva)
{
vizitat[nod] = 1;
for(int i = 0; i < listaAd[nod].size(); i++)
{
int nod_curent = listaAd[nod][i];
if(vizitat[nod_curent] == 0)
DFS1_CTC_Kosaraju(nod_curent, vizitat, stiva);
}
stiva.push(nod); /// adaugam in stiva nodurile
}
void Graf ::DFS2_CTC_Kosaraju(int nod, vector<int>& vizitatTr, vector<vector<int>> listaTr,
vector<int>& vector_aux)
{
vector_aux.push_back(nod); /// adaugam nodul la componenta curenta
vizitatTr[nod] = 1;
for(int i = 0; i < listaTr[nod].size(); i++)
{
int nod_curent = listaTr[nod][i];
if(vizitatTr[nod_curent] == 0)
DFS2_CTC_Kosaraju(nod_curent, vizitatTr, listaTr, vector_aux);
}
}
vector<vector<int>> Graf ::CTC(vector<vector<int>> listaTr)
{
vector<int> vizitat(nrN + 1, 0);
vector<int> vizitatTr(nrN + 1, 0);
stack<int> stiva;
vector<vector<int>> rez(nrN + 1);
int nr = 0;
for(int i = 1; i <= nrN; i++)
if(vizitat[i] == 0)
DFS1_CTC_Kosaraju(i, vizitat, stiva); /// primul dfs
while(!stiva.empty()) /// parcurgem stiva
{
int v = stiva.top();
stiva.pop();
if(vizitatTr[v] == 0) /// daca nodul curent din stiva e nevizitat
{
vector<int> vector_aux;
DFS2_CTC_Kosaraju(v, vizitatTr, listaTr, vector_aux); /// al doilea dfs
rez.push_back(vector_aux); /// adaugam la solutie componenta curenta
nr++; /// incrementam numarul de componente
}
}
return rez;
}
/// MuchiiCritice - O(N + M)
vector<pair<int, int>> Graf ::muchiiCritice()
{
vector<int> vizitat(nrN + 1, 0);
vector<int> nivel(nrN + 1, 0);
vector<int> nivelInt(nrN + 1, 0);
vector<pair<int, int>> rez;
DFS_MuchiiCritice(0, 0, vizitat, nivel, nivelInt, rez);
return rez;
}
void Graf ::DFS_MuchiiCritice(int nod, int tata, vector<int>& vizitat, vector<int>& nivel,
vector<int>& nivelInt, vector<pair<int, int>>& rez)
{
vizitat[nod] = 1;
nivel[nod] = nivel[tata] + 1; /// actualizam nivelul
nivelInt[nod] = nivel[nod]; /// actualizam nivelul de intoarcere
for(int i = 0; i < listaAd[nod].size(); i++)
{
int copil = listaAd[nod][i];
if(copil != tata)
{
if(vizitat[copil] == 1)
{
if(nivelInt[nod] >
nivel[copil]) /// actualizam nivelul de intoarcere acolo
/// unde gasim o muchie de intoarcere
nivelInt[nod] = nivel[copil];
}
else
{
DFS_MuchiiCritice(copil, nod, vizitat, nivel, nivelInt, rez);
if(nivelInt[nod] >
nivelInt[copil]) /// actualizam nivelul de intoarcere in
/// cazul in care un copil are acest nivel
/// mai mic
nivelInt[nod] = nivelInt[copil];
if(nivel[nod] < nivelInt[copil]) /// conditie muchii critice
rez.push_back(make_pair(nod, copil));
}
}
}
}
/// PaduriDeMultimiDisjuncte
/// O(logN)
int Graf ::Find(int nod, vector<int> tata)
{
if(tata[nod] == nod)
return nod;
return Find(tata[nod], tata);
}
/// O(1)
void Graf ::Union(int nod1, int nod2, vector<int>& tata, vector<int>& rang)
{
int TataNod1 = Find(nod1, tata);
int TataNod2 = Find(nod2, tata);
if(TataNod1 == TataNod2)
return;
if(rang[TataNod1] < rang[TataNod2])
tata[TataNod1] = TataNod2;
else if(rang[TataNod1] > rang[TataNod2])
tata[TataNod2] = TataNod1;
else
{
tata[TataNod2] = TataNod1;
rang[TataNod1]++;
}
}
/// RoyFloyd - O(N^3)
vector<vector<int>> Graf ::royFloyd()
{
/// se incearca pentru orice pereche de noduri {i, j} sa se obtina un drum de cost mai
/// mic prin noduri intermediare t
for(int t = 0; t < nrN; t++)
for(int i = 0; i < nrN; i++)
for(int j = 0; j < nrN; j++)
if(listaAd[i][t] + listaAd[t][j] < listaAd[i][j])
listaAd[i][j] = listaAd[i][t] + listaAd[t][j];
return listaAd;
}
/// DiametrulUnuiArbore - O(N)
int Graf ::diametruArbore()
{
int maxim = 0, ultimulElement;
vector<int> rez = BFS(1); /// primul BFS din nodul 1
for(int i = 1; i < rez.size(); i++)
if(rez[i] > maxim)
{
maxim = rez[i];
ultimulElement = i;
}
rez = BFS(
ultimulElement); /// al doilea BFS din nodul in care am ajuns in prima parcurgere
maxim = 0;
for(int i = 1; i < rez.size(); i++)
if(rez[i] > maxim)
maxim = rez[i];
return maxim + 1; /// + 1 deoarece functia BFS folosita returneaza costurile, iar
/// problema ne cere numarul de noduri din drum
}
/// FluxMaxim - O(NM^2)
bool Graf ::bfsFlux(vector<int>& tata, vector<vector<int>>& grafRezidual)
{
/// BFS pentru a gasi un drum de ameliorare
vector<bool> vizitat(nrN + 1, false);
queue<int> coada;
coada.push(1);
vizitat[1] = true;
tata[1] = -1;
while(!coada.empty())
{
int nod_curent = coada.front();
for(int i = 1; i <= nrN; i++)
if(vizitat[i] == false && grafRezidual[nod_curent][i] > 0)
{
if(i == nrN) /// daca am ajuns in destinatie
{
tata[i] = nod_curent;
return true;
}
coada.push(i);
tata[i] = nod_curent;
vizitat[i] = true;
}
coada.pop();
}
return false;
}
int Graf ::fluxMaxim()
{
int fluxul_maxim = 0, flux_curent, tata_curent;
vector<vector<int>> grafRezidual(
nrN + 1,
vector<int>(nrN + 1,
0)); /// Graf rezidual - graf in care retinem si muchia inversa
vector<int> tata(nrN + 1, 0);
for(int i = 1; i <= nrN; i++)
for(int j = 1; j <= nrN; j++)
grafRezidual[i][j] = listaAd[i][j];
while(bfsFlux(tata, grafRezidual) == true) /// cat timp gasim un drum de ameliorare
{
flux_curent = INT_MAX;
for(int v = nrN; v != 1;
v = tata[v]) /// gasim valoarea cu care putem mari fluxul (minimul dintre
/// capacitatile ramase)
{
tata_curent = tata[v];
flux_curent = min(flux_curent, grafRezidual[tata_curent][v]);
}
for(int v = nrN; v != 1; v = tata[v]) /// actualizam graful rezidual
{
tata_curent = tata[v];
grafRezidual[v][tata_curent] +=
flux_curent; /// pe muchia x -> y marim fluxul cu acea valoare
grafRezidual[tata_curent][v] -=
flux_curent; /// pe muchia y -> x micsoram fluxul cu acea valoare
}
fluxul_maxim += flux_curent;
}
return fluxul_maxim;
}
///---------------------Graf Ponderat - Muchii cu costuri-------------------------------
class GrafPonderat : public Graf
{
private:
vector<vector<pair<int, int>>> muchiiCuCost;
/// Functii APM Kruskal
int find_tata(int, vector<int>); /// gaseste tatal
void set_tata(int, int, vector<int>&); /// seteaza tatal
public:
GrafPonderat(int, int, vector<vector<int>>, vector<vector<pair<int, int>>>);
vector<pair<int, int>>
apmKruskal(ostream&,
vector<vector<int>>); /// returneaza muchiile din APM si afiseaza costul
/// total si numarul muchiilor din APM
vector<int> dijkstra(); /// returneaza vectorul de distante minime, plecand din nodul 1
vector<int>
bellmanford(ostream&); /// returneaza vectorul de distante minime, plecand din nodul 1.
/// Daca nu se poate aplica, afiseaza mesajul "Ciclu negativ!"
};
GrafPonderat ::GrafPonderat(int nrNoduri, int nrMuchii, vector<vector<int>> lista,
vector<vector<pair<int, int>>> muchiiCost)
: Graf(nrNoduri, nrMuchii, lista) /// apelam constructorul din baza
{
muchiiCuCost = muchiiCost;
}
/// Apm - Kruskal - O(MlogN)
int GrafPonderat ::find_tata(int nod, vector<int> tata)
{
while(nod != tata[nod])
nod = tata[nod];
return nod;
}
void GrafPonderat ::set_tata(int nod1, int nod2, vector<int>& tata)
{
tata[nod1] = tata[nod2];
}
vector<pair<int, int>> GrafPonderat ::apmKruskal(ostream& out, vector<vector<int>> muchiiCost)
{
vector<pair<int, int>> rez;
vector<int> tata(nrN + 1);
for(int i = 1; i <= nrN; i++)
tata[i] = i;
sort(muchiiCost.begin(), muchiiCost.end(),
[](vector<int> v1, vector<int> v2)
{
return v1[2] < v2[2];
}); /// sortam muchiile crescator dupa cost
int cost_total = 0, nod1, nod2, tata1, tata2, nrMuchiiAPM = 0, index_muchie = 0;
while(nrMuchiiAPM < nrN - 1) /// parcurgem muchiile pana cand avem suficiente ca graful
/// sa fie conex = (numar noduri - 1) muchii
{
nod1 = muchiiCost[index_muchie][0]; /// nod1 din muchia curenta
nod2 = muchiiCost[index_muchie][1]; /// nod2 din muchia curenta
/// cautam radacina arborilor partiali din care fac parte nodurile
tata1 = find_tata(nod1, tata);
tata2 = find_tata(nod2, tata);
if(tata1 != tata2) /// am gasit muchie de adaugat in APM
{
if(tata1 < tata2)
set_tata(tata1, tata2, tata);
else
set_tata(tata2, tata1, tata);
rez.push_back(make_pair(nod1, nod2));
cost_total = cost_total + muchiiCost[index_muchie][2];
nrMuchiiAPM++;
}
index_muchie++;
}
out << cost_total << "\n";
out << nrMuchiiAPM << "\n";
return rez;
}
/// Dijkstra - O(MlogN)
vector<int> GrafPonderat ::dijkstra()
{
vector<int> distante(nrN + 1, INT_MAX); /// initial distantele sunt egale cu infinit
vector<int> inCoada(nrN + 1, 0);
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>>
coada; /// perechi {cost, nod}
distante[1] = 0;
coada.push({0, 1});
inCoada[1] = 1;
while(!coada.empty())
{
int nodCurent = coada.top().second;
coada.pop();
inCoada[nodCurent] = 0;
for(int i = 0; i < muchiiCuCost[nodCurent].size(); i++)
{
int vecin, cost_vecin;
vecin = muchiiCuCost[nodCurent][i].first;
cost_vecin = muchiiCuCost[nodCurent][i].second;
if(distante[nodCurent] + cost_vecin < distante[vecin])
/// daca distanta pana la nodul curent + costul pana la nodul adiacent
/// < distanta nodului adiacent, actualizam aceasta distanta
{
distante[vecin] = distante[nodCurent] + cost_vecin;
if(inCoada[vecin] == 0)
{
coada.push({distante[vecin], vecin});
inCoada[vecin] = 1;
}
}
}
}
return distante;
}
/// Bellmanford - O(MNlogN)
vector<int> GrafPonderat ::bellmanford(ostream& out) /// relaxam de nr_noduri-1 ori
{
vector<int> distante(nrN + 1, INT_MAX);
vector<int> inCoada(nrN + 1, 0);
vector<int> vizitat(nrN + 1, 0);
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> coada;
int ok = 1;
distante[1] = 0;
coada.push({0, 1});
inCoada[1] = 1;
while(!coada.empty())
{
int nodCurent = coada.top().second;
coada.pop();
inCoada[nodCurent] = 0;
vizitat[nodCurent]++;
if(vizitat[nodCurent] >
nrN - 1) /// daca am vizitat un nod de mai mult de (nr_noduri - 1) ori
{
ok = 0; /// am ciclu negativ
break;
}
for(int i = 0; i < muchiiCuCost[nodCurent].size(); i++)
{
int vecin, cost_vecin;
vecin = muchiiCuCost[nodCurent][i].first;
cost_vecin = muchiiCuCost[nodCurent][i].second;
if(distante[nodCurent] + cost_vecin < distante[vecin])
{
distante[vecin] = distante[nodCurent] + cost_vecin;
if(inCoada[vecin] == 0)
{
coada.push({distante[vecin], vecin});
inCoada[vecin] = 1;
}
}
}
}
if(ok == 0)
out << "Ciclu negativ!";
else
return distante;
}
///-------------------------BFS------------------------------
void problemaBFS()
{
int n, s, st, dr, m;
/*cout << "Numerotare noduri de la index 1! Graf orientat!" << "\n";
cout << "Introduceti numarul de noduri: ";
cin >> n;
cout << "Introduceti numarul de muchii: ";
cin >> m;
cout << "Introduceti nodul start: ";
cin >> s;
cout << "Introduceti muchiile: ";*/
ifstream fin("bfs.in");
ofstream fout("bfs.out");
fin >> n >> m >> s;
vector<vector<int>> listaAd(n + 1);
for(int i = 1; i <= m; i++)
{
// cin >> st >> dr;
fin >> st >> dr;
listaAd[st].push_back(dr);
}
Graf g(n, m, listaAd);
vector<int> cost = g.BFS(s);
for(int i = 1; i <= n; i++)
fout << cost[i] << " ";
fin.close();
fout.close();
}
///-------------------------DFS--------------------------------
void problemaDFS()
{
int n, m, st, dr;
/*cout << "Numerotare noduri de la index 1! Graf neorientat!" << "\n";
cout << "Introduceti numarul de noduri: ";
cin >> n;
cout << "Introduceti numarul de muchii: ";
cin >> m;
cout << "Introduceti muchiile: ";*/
ifstream fin("dfs.in");
ofstream fout("dfs.out");
fin >> n >> m;
vector<vector<int>> listaAd(n + 1);
for(int i = 1; i <= m; i++)
{
// cin >> st >> dr;
fin >> st >> dr;
listaAd[st].push_back(dr);
listaAd[dr].push_back(st);
}
Graf g(n, m, listaAd);
int rez = g.nr_componente_conexe();
fout << rez;
fin.close();
fout.close();
}
///------------------Havel Hakimi-------------------------
void problemaHavelHakimi()
{
vector<int> v;
int n, el;
cout << "Introduceti numarul de elemente: ";
cin >> n;
cout << "Introduceti gradele: ";
for(int i = 0; i < n; i++)
{
cin >> el;
v.push_back(el);
}
vector<vector<int>> vgol = {};
Graf g(0, 0, vgol);
bool rez = g.HavelHakimi(v, n);
if(rez == true)
cout << "Da, exista graf!";
else
cout << "Nu, nu exista graf!";
}
///------------------Sortare Topologica------------------
void problemaSortareTopologica()
{
int n, m, st, dr;
/*cout << "Numerotare noduri de la index 1! Graf orientat!" << "\n";
cout << "Introduceti numarul de noduri: ";
cin >> n;
cout << "Introduceti numarul de muchii: ";
cin >> m;
cout << "Introduceti muchiile: ";*/
ifstream fin("sortaret.in");
ofstream fout("sortaret.out");
fin >> n >> m;
vector<int> grade(n + 1, 0);
vector<vector<int>> listaAd(n + 1);
for(int i = 1; i <= m; i++)
{
// cin >> st >> dr;
fin >> st >> dr;
listaAd[st].push_back(dr);
grade[dr]++;
}
Graf g(n, m, listaAd);
vector<int> rez = g.sortareTopologica(grade);
for(int i = 0; i < rez.size(); i++)
fout << rez[i] << " ";
fin.close();
fout.close();
}
///---------------Componente Tare Conexe-------------------
void problemaComponenteTareConexe()
{
int n, m, st, dr;
/* cout << "Numerotare noduri de la index 1! Graf orientat!" << "\n";
cout << "Introduceti numarul de noduri: ";
cin >> n;
cout << "Introduceti numarul de muchii: ";
cin >> m;
cout << "Introduceti muchiile: ";*/
ifstream fin("ctc.in");
ofstream fout("ctc.out");
fin >> n >> m;
vector<vector<int>> listaTr(n + 1);
vector<vector<int>> listaAd(n + 1);
for(int i = 1; i <= m; i++)
{
// cin >> st >> dr;
fin >> st >> dr;
listaAd[st].push_back(dr);
listaTr[dr].push_back(st);
}
Graf g(n, m, listaAd);
vector<vector<int>> rez = g.CTC(listaTr);
int nrCTC = 0;
for(int i = 0; i < rez.size(); i++)
if(rez[i].size() != 0)
nrCTC++;
fout << nrCTC << "\n";
for(int i = 0; i < rez.size(); i++)
{
if(rez[i].size() != 0)
{
for(int j = 0; j < rez[i].size(); j++)
fout << rez[i][j] << " ";
fout << "\n";
}
}
fin.close();
fout.close();
}
///------------------Muchii Critice---------------------
void problemaCriticalConnectionsLeetCode()
{
int n, m, st, dr;
cout << "Numerotare noduri de la index 0! Graf neorientat!"
<< "\n";
cout << "Introduceti numarul de noduri: ";
cin >> n;
cout << "Introduceti numarul de muchii: ";
cin >> m;
cout << "Introduceti muchiile: ";
vector<vector<int>> listaAd(n + 1);
for(int i = 1; i <= m; i++)
{
cin >> st >> dr;
listaAd[st].push_back(dr);
listaAd[dr].push_back(st);
}
Graf g(n, m, listaAd);
cout << "Muchii critice: ";
vector<pair<int, int>> rez = g.muchiiCritice();
for(int i = 0; i < rez.size(); i++)
cout << rez[i].first << " " << rez[i].second << "\n";
}
///---------------Paduri De Multimi Disjuncte------------------
void problemaPaduriDeMultimiDisjuncte()
{
ifstream fin("disjoint.in");
ofstream fout("disjoint.out");
int n, m, st, dr, operatie;
fin >> n >> m;
/*cout << "Introduceti numarul de multimi: ";
cin >> n;
cout << "Introduceti numarul de operatii efectuate: ";
cin >> m;
cout << "Operatie 1: Reuneste multimile unde se afla elementul x, respectiv y" << "\n";
cout << "Operatie 2: Afiseaza 'DA' daca cele doua elemente se afla in aceeasi multime,
'NU' in caz contrar" << "\n"; cout << "Introduceti valorile de forma: operatie -
elementul x - elementul y: ";*/
vector<vector<int>> vgol = {};
vector<int> tata(n + 1);
vector<int> rang(n + 1, 0);
Graf g(n, m, vgol);
for(int i = 1; i <= n; i++)
tata[i] = i;
for(int i = 1; i <= m; i++)
{
fin >> operatie >> st >> dr;
if(operatie == 1)
{
g.Union(st, dr, tata, rang);
}
else if(g.Find(st, tata) == g.Find(dr, tata))
fout << "DA"
<< "\n";
else
fout << "NU"
<< "\n";
}
fin.close();
fout.close();
}
///---------------------APM Kruskal-------------------------
void problemaAPMKruskal()
{
ifstream fin("apm.in");
ofstream fout("apm.out");
int n, m, st, dr, cost;
// cout << "Introduceti numarul de noduri: ";
// cin >> n;
// cout << "Introduceti numarul de muchii: ";
// cin >> m;
// cout << "Introduceti muchiile si costul acestora: " << "\n";
fin >> n >> m;
vector<vector<int>> lista = {};
vector<vector<pair<int, int>>> muchiiCuCost = {{}};
vector<vector<int>> muchiiCost;
for(int i = 1; i <= m; i++)
{
// cin >> st >> dr >> cost;
fin >> st >> dr >> cost;
muchiiCost.push_back({st, dr, cost});
}
GrafPonderat g(n, m, lista, muchiiCuCost);
vector<pair<int, int>> rezultat = g.apmKruskal(fout, muchiiCost);
for(int i = 0; i < rezultat.size(); i++)
fout << rezultat[i].first << " " << rezultat[i].second << "\n";
fin.close();
fout.close();
}
///----------------------------Dijkstra----------------------------------
void problemaDijkstra()
{
ifstream fin("dijkstra.in");
ofstream fout("dijkstra.out");
int n, m, st, dr, cost;
fin >> n >> m;
vector<vector<int>> lista = {};
vector<vector<pair<int, int>>> muchiiCuCost(n + 1);
for(int i = 1; i <= m; i++)
{
fin >> st >> dr >> cost;
muchiiCuCost[st].push_back(make_pair(dr, cost));
}
GrafPonderat g(n, m, lista, std::move(muchiiCuCost));
vector<int> rez = g.dijkstra();
for(int i = 2; i < rez.size(); i++)
if(rez[i] == INT_MAX)
fout << 0 << " ";
else
fout << rez[i] << " ";
fin.close();
fout.close();
}
///-------------------------Bellmanford---------------------------------
void problemaBellmanford()
{
ifstream fin("bellmanford.in");
ofstream fout("bellmanford.out");
int n, m, st, dr, cost;
fin >> n >> m;
vector<vector<int>> lista = {};
vector<vector<pair<int, int>>> muchiiCuCost(n + 1);
for(int i = 1; i <= m; i++)
{
fin >> st >> dr >> cost;
muchiiCuCost[st].push_back(make_pair(dr, cost));
}
GrafPonderat g(n, m, lista, muchiiCuCost);
vector<int> rez = g.bellmanford(fout);
for(int i = 2; i < rez.size(); i++)
fout << rez[i] << " ";
fin.close();
fout.close();
}
///------------------------Roy Floyd--------------------------------------
void problemaRoyFloyd()
{
ifstream fin("royfloyd.in");
ofstream fout("royfloyd.out");
int n, el;
fin >> n;
vector<vector<int>> matrice(n + 1);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
fin >> el;
if(el == 0 && i != j)
matrice[i].push_back(INT_MAX);
else
matrice[i].push_back(el);
}
Graf g(n, 0, matrice);
vector<vector<int>> rez = g.royFloyd();
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
if(rez[i][j] != INT_MAX)
fout << rez[i][j] << " ";
else
fout << 0 << " ";
fout << "\n";
}
fin.close();
fout.close();
}
///-----------------------Diametrul Unui Arbore-----------------------------
void problemaDiametrulUnuiArbore()
{
int n, m, st, dr;
ifstream fin("darb.in");
ofstream fout("darb.out");
fin >> n;
vector<vector<int>> listaAd(n + 1);
for(int i = 1; i <= n - 1; i++)
{
fin >> st >> dr;
listaAd[st].push_back(dr);
listaAd[dr].push_back(st);
}
Graf g(n, n - 1, listaAd);
int rez = g.diametruArbore();
fout << rez;
fin.close();
fout.close();
}
///----------------------Flux maxim--------------------------
void problemaFluxMaxim()
{
ifstream fin("maxflow.in");
ofstream fout("maxflow.out");
int n, m, st, dr, cost;
fin >> n >> m;
vector<vector<int>> listaAd(n + 1, vector<int>(n + 1, 0));
for(int i = 1; i <= m; i++)
{
fin >> st >> dr >> cost;
listaAd[st][dr] = cost;
}
Graf g(n, m, listaAd);
int flux_maxim = g.fluxMaxim();
fout << flux_maxim;
fin.close();
fout.close();
}
int main()
{
problemaDijkstra();
}