#include <fstream>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
#include <set>
using namespace std;
class graph{
int n,m;
vector<vector<int>> arcs;
vector<vector<pair<int,int> > > cost_arcs;//first-destination, second-cost
void sort_dfs(int start,vector<bool> &viz,queue<int> &coada);
void tarjan(int n,vector< vector<int> > &C,vector<bool> &in_stack,stack <int> &S,vector<int> &idx,vector<int> &lowlink,int &index);
void critical_arcs_dfs(int n,ostream &fout,vector<bool> &in_stack,stack <int> &S,vector<int> &idx,vector<int> &lowlink,int &index);
int root(int x,vector<int> &tati,vector<int> &rang);
void unite(int x,int y,vector<int> &tati,vector<int> &rang);
bool negative_cycle=false;
int apm_cost=0;
int apm_size=0;
public:
int get_apm_cost(){return this->apm_cost;}
int get_apm_size(){return this->apm_size;}
void print();
graph(){this->n=0;this->m=0;}
graph(int n,int m,vector< vector<int>> arcs,vector<vector<pair<int,int> > > cost_arcs);
graph(int n,int m,vector< vector<int>> arcs);
void bfs(int start);
void dfs(int start,vector<bool> &viz);
void componente_conexe();
void sortare_top();
graph Havel_Hakimi(vector<int> s);
void comp_tare_conexe();
void critical_arcs();
void disjoint_command(ifstream &fin,ofstream &fout,vector<int> &tati,vector<int> &rang);
vector<int> bellman_ford();
bool get_negative_cycle(){return this->negative_cycle;}
vector<int> dijkstra();
vector<vector<int> > apm();
void print_distance_matrix(string filename);
void roy_floyd();
int d_arb();
};
void graph::print()
{
ofstream fout("graph.out");
vector <int>::const_iterator it;
for(int i=0;i<n;i++)
{
for (it = arcs[i].begin(); it != arcs[i].end(); ++ it)
fout<<i<<' '<<*it<<'\n';
}
}
graph::graph(int n,int m,vector< vector<int>> arcs)
{
this->n=n;
this->m=m;
this->arcs=arcs;
}
graph::graph(int n,int m,vector< vector<int>> arcs,vector<vector<pair<int,int> > > cost_arcs)
{
this->n=n;
this->m=m;
this->cost_arcs=cost_arcs;
this->arcs=arcs;
}
void graph::bfs(int start)
{
queue<int> que;
que.push(start);
int *dist=new int[this->n];
for(int i=0;i<n;i++)dist[i]=-1;//initializez distantele cu -1
dist[start]=0;//distanta startului e 0
while(!que.empty())//cat timp mai am in coada
{
int current=que.front();//iau elementul curent
que.pop();//il scot din coada
for(unsigned int i=0;i<arcs[current].size();i++)//ii parcurg lista de vecini
{
if(dist[arcs[current][i]]==-1)//daca vecinul e nevizitat
{
dist[arcs[current][i]]=dist[current]+1;//distanta lui devine cea a tatalui +1
que.push(arcs[current][i]);//il pun in coada
}
}
}
ofstream fout("bfs.out");
for(int i=0;i<this->n;i++)
fout<<dist[i]<<' ';//afisez distantele
delete[] dist;//sterg vectorul dinamic
}
void graph::dfs(int start,vector<bool> &viz)
{
viz[start]=true;
for(unsigned int i=0;i<arcs[start].size();i++)//ii parcurg lista de vecini
{
if(!viz[arcs[start][i]])//daca e nevizitat
{
viz[arcs[start][i]]=true;//il vizitez
this->dfs(arcs[start][i],viz);//apelez recursiv dfs pe el
}
}
}
void graph::componente_conexe()
{
vector<bool> viz(n);
for(int i=0;i<n;i++)viz[i]=false;//initializez cu fals vectorul
int componente=0;//numarul de componente conexe
for(int i=0;i<n;i++)//parcurg toate nodurile
if(!viz[i])//daca nu e deja vizitat
{
dfs(i,viz);//incep un dfs din el
componente++;//si am inca o componenta conexa
}
ofstream fout("dfs.out");
fout<<componente;
}
void graph::sort_dfs(int start, vector<bool> &viz,queue<int> &coada)
{
viz[start]=true;
for(unsigned int i=0;i<arcs[start].size();i++)//ii parcurg lista de vecini
{
if(!viz[arcs[start][i]])//daca e nevizitat
{
viz[arcs[start][i]]=true;//il vizitez
this->sort_dfs(arcs[start][i],viz,coada);//apelez recursiv dfs pe el
}
}
coada.push(start);
}
void graph::sortare_top()
{
queue<int> coada;
vector<bool> viz(n);
for(int i=0;i<n;i++)viz[i]=false;//initializez cu fals vectorul
sort_dfs(0,viz,coada);
ofstream fout("sortaret.out");
while(!coada.empty())
{
fout<<coada.back()+1<<' ';
coada.pop();
}
}
graph graph::Havel_Hakimi(vector<int> s)
{
int n,m;
m=0;
n=s.size();
vector<vector<int>> arcs;
arcs.resize(n);
vector<pair<int,int>> v;
for(int i=0;i<n;i++)
v.push_back(make_pair(i,s[i]));//first - indicele second - gradul
sort(v.begin(),v.end(),[](pair<int,int> v1,pair<int,int> v2)->bool{return v1.second>v2.second;});//sortez dupa grade, in ordine inversa
bool done=false;
while(!done)
{
if(v[0].second>0)
{
for(int i=1;i<=v[0].second;i++)//de la urmatorul, pana epuizam gradul nodului de pe pozitia 0
{
m++;
arcs[v[0].first].push_back(v[i].first);//pun arc intre noduri
v[i].second--;//scad gradul si nodului pus
}
}
else done=true;
v[0].second=0;
sort(v.begin(),v.end(),[](pair<int,int> v1,pair<int,int> v2)->bool{return v1.second>v2.second;});//sortez dupa grade, in ordine inversa
}
return graph(n,m,arcs);
}
void graph::comp_tare_conexe()
{
vector<int> idx,lowlink;//indecsii nodurilor si indexul minim ce poate fi atins dintr-un dfs Tarjan
vector<bool> in_stack;//daca nodul se afla in stiva pt Tarjan recursiv
stack <int> S;//stiva pt Tarjan
int index=0;
vector< vector<int> > C;//ctc-urile
lowlink.resize(n);//initializam marimea lui lowlink
idx.assign(n, -1);
in_stack.assign(n, 0);
//initializam idx si in_stack cu valorile de inceput
for (int i = 0; i < n; ++ i)
if (idx[i] == -1)
tarjan(i,C,in_stack,S,idx,lowlink,index);//apelam pentru fiecare nod nevizitat
ofstream fout("ctc.out");
fout<<(int)C.size()<<'\n';//numarul de linii din C este numarul de ctc
for(int i=0;i<(int)C.size();i++)
{
for(int j=0;j<(int)C[i].size();j++)
fout<<C[i][j]+1<<' ';
fout<<'\n';
}//afisez fiecare componenta in parte
fout.close();
}
void graph::tarjan(int n,vector< vector<int> > &C,vector<bool> &in_stack,stack <int> &S,vector<int> &idx,vector<int> &lowlink,int &index)
{
idx[n] = lowlink[n] = index;
//setez indexul nodului, initializez lowlink-ul cu propria valoare
index ++;
S.push(n);
in_stack[n] = true;
//pun nodul curent in stiva si marchez asta
vector <int>::const_iterator it;
for (it = arcs[n].begin(); it != arcs[n].end(); ++ it)//parcurg toti vecinii nodului curent
{
if (idx[*it] == -1)//daca nu a mai fost vizitat
{
tarjan(*it,C,in_stack,S,idx,lowlink,index);//apelez recursiv
lowlink[n] = min(lowlink[n], lowlink[*it]);//updatez minimul daca apelul recursiv a generat unul mai mic
}
else if (in_stack[*it])//daca e deja in stiva
lowlink[n] = min(lowlink[n], lowlink[*it]);//updatez minimul daca este cazul
}
if (idx[n] == lowlink[n])//daca si-a pastrat lowlink-ul dupa parcurgere nu mai avem unde merge si afisam
{
vector<int> con;//ctc curenta
int node;
do {
node = S.top();
con.push_back(node);
S.pop();
in_stack[node] = false;
}
while (node != n);//dump la stiva in ctc curenta
C.push_back(con);//pun ctc curenta in matricea de output
}
}
void graph::critical_arcs_dfs(int n,ostream &fout,vector<bool> &in_stack,stack <int> &S,vector<int> &idx,vector<int> &lowlink,int &index)
{
idx[n] = lowlink[n] = index;
//setez indexul nodului, initializez lowlink-ul cu propria valoare
index ++;
S.push(n);
in_stack[n] = true;
//pun nodul curent in stiva si marchez asta
vector <int>::const_iterator it;
for (it = arcs[n].begin(); it != arcs[n].end(); ++ it)//parcurg toti vecinii nodului curent
{
if (idx[*it] == -1)//daca nu a mai fost vizitat
{
critical_arcs_dfs(*it,fout,in_stack,S,idx,lowlink,index);//apelez recursiv
lowlink[n] = min(lowlink[n], lowlink[*it]);//updatez minimul daca apelul recursiv a generat unul mai mic
}
else if (in_stack[*it])//daca e deja in stiva
lowlink[n] = min(lowlink[n], lowlink[*it]);//updatez minimul daca este cazul
if(lowlink[*it]>idx[n]) fout<<n<<' '<<*it;
}
}
void graph::critical_arcs()
{
vector<int> idx,lowlink;//indecsii nodurilor si indexul minim ce poate fi atins dintr-un dfs Tarjan
vector<bool> in_stack;//daca nodul se afla in stiva pt Tarjan recursiv
stack <int> S;//stiva pt Tarjan
int index=0;
ofstream fout("crit_conn.out");
lowlink.resize(n);//initializam marimea lui lowlink
idx.assign(n, -1);
in_stack.assign(n, 0);
//initializam idx si in_stack cu valorile de inceput
for (int i = 0; i < n; ++ i)
if (idx[i] == -1)
critical_arcs_dfs(i,fout,in_stack,S,idx,lowlink,index);//apelam pentru fiecare nod nevizitat
fout.close();
}
int graph::root(int x,vector<int> &tati, vector<int> &rang)
{
int c=x,y;
while(tati[c]!=c)c=tati[c];
while(tati[x]!=x)
{
y=tati[x];
tati[x]=c;
x=y;
}
return c;
}
void graph::unite(int x,int y,vector<int> &tati,vector<int> &rang)
{
if(rang[x]>rang[y])
tati[y]=x;
else tati[x]=y;//punem in arborele mai mare arborele mai mic
if(rang[x]==rang[y])rang[y]++;//daca au aceiasi marime, o incrementez
}
void graph::disjoint_command(ifstream &fin,ofstream &fout,vector<int> &tati,vector<int> &rang)
{
int c,x,y;
fin>>c>>x>>y;
x--;
y--;
if(c==2)//daca se cere daca sunt in aceiasi multime
if(root(x,tati,rang)==root(y,tati,rang))//daca au aceiasi radacina
fout<<"DA\n";
else fout<<"NU\n";
else unite(root(x,tati,rang),root(y,tati,rang),tati,rang);//reunim multimile
}
void graph::print_distance_matrix(string filename)
{
ofstream fout(filename);
vector < pair<int,int> >::const_iterator it;
for(int i=0;i<n;i++)
{
for (it = cost_arcs[i].begin(); it != cost_arcs[i].end(); ++ it)
fout<<(*it).second<<' ';
fout<<'\n';
}
fout.close();
}
void graph::roy_floyd()
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if (cost_arcs[i][k].second && cost_arcs[k][j].second
&& (cost_arcs[i][j].second > cost_arcs[i][k].second + cost_arcs[k][j].second
|| !(cost_arcs[i][j].second)) && i != j)
cost_arcs[i][j] = make_pair(j,cost_arcs[i][k].second + cost_arcs[k][j].second);
}
vector<int> graph::bellman_ford()
{
const int INF = 0x3f3f3f3f;
vector<int> dist(n);
dist.assign(n,INF);
queue<int> q;
vector<bool> in_queue;
vector<int> cnt_in_queue;
cnt_in_queue.assign(n,0);
in_queue.assign(n,false);
int x;
vector < pair <int, int> >::iterator it;
dist[0]=0;q.push(0);in_queue[0]=true;
//initializari
while(!q.empty() && !this->negative_cycle)
{
x=q.front();
q.pop();in_queue[x]=false;
for (it = cost_arcs[x].begin(); it != cost_arcs[x].end(); ++ it)
if (dist[x] < INF)
if(dist[it->first]>dist[x]+it->second)//daca pot optimiza cu arcul curent
{
dist[it->first]=dist[x]+it->second;//optimizez
if(!in_queue[it->first]) //daca nodul respectiv nu a fost pus in coada deja
{
if(cnt_in_queue[it->first]>n)//daca a fost pus in coada de mai mult de n ori
negative_cycle=true;//exista un ciclu negativ
else
{
q.push(it->first);in_queue[it->first]=true;//il pun in coada
cnt_in_queue[it->first]++;//marchez ca a mai fost pus in coada odata
}
}
}
}
return dist;
}
vector<int> graph::dijkstra()
{
const int INF = 0x3f3f3f3f;
vector<int> dist;
dist.assign(n,INF);
dist[0]=0;
set<pair<int,int> > h;
h.insert(make_pair(0,0));
vector<pair<int, int>>::iterator it;
while(!h.empty()){
int node=h.begin()->second;
h.erase(h.begin());
for(it=cost_arcs[node].begin();it!=cost_arcs[node].end();it++)
{
int to=it->first;
int cost=it->second;
if(dist[to]>dist[node]+cost){
if(dist[to]!=INF){
h.erase(h.find(make_pair(dist[to],to)));
}
dist[to]=dist[node]+cost;
h.insert(make_pair(dist[to],to));
}
}
}
for(vector<int>::iterator i=dist.begin()+1;i!=dist.end();i++)
if(*i==INF)
*i=0;
return dist;
}
vector< vector<int> > graph::apm()
{
this->apm_cost=0;
this->apm_size=0;
vector<int> tati(n),rang(n);
rang.assign(n,1);
for(int i=0;i<n;i++)tati[i]=i;
vector<vector<int> > apm(n);
struct triple{int x,y,c;};
vector<triple> muchii(n);
triple aux;
for(int i=0;i<(int)cost_arcs.size();i++)
for(int j=0;j<(int)cost_arcs[i].size();j++)
{
aux.x=i;
aux.y=(cost_arcs[i])[j].first;
aux.c=(cost_arcs[i])[j].second;
muchii.push_back(aux);
}
//convertesc vectorul de vectori la un format usor sortabil
sort(muchii.begin(),muchii.end(),[](triple v1,triple v2)->bool{return v1.c<v2.c;});
for(int i=0;i<(int)muchii.size();i++)
{
if(root(muchii[i].x,tati,rang)!=root(muchii[i].y,tati,rang))
{
apm[muchii[i].x].push_back(muchii[i].y);
this->apm_cost+=muchii[i].c;
unite(root(muchii[i].x,tati,rang),root(muchii[i].y,tati,rang),tati,rang);
this->apm_size++;
}
}
return apm;
}
int graph::d_arb()
{
queue<int> que;
que.push(0);
vector<int> dist;
dist.assign(n,-1);
int end_of_chain=0;
int max_chain_length=0;
dist[0]=0;
while(!que.empty())
{
int current=que.front();//iau elementul curent
que.pop();//il scot din coada
for(unsigned int i=0;i<arcs[current].size();i++)//ii parcurg lista de vecini
{
if(dist[arcs[current][i]]==-1)//daca vecinul e nevizitat
{
dist[arcs[current][i]]=dist[current]+1;//distanta lui devine cea a tatalui +1
que.push(arcs[current][i]);//il pun in coada
}
}
end_of_chain=current;
}
dist.assign(n,-1);
dist[end_of_chain]=0;
que.push(end_of_chain);
while(!que.empty())
{
int current=que.front();//iau elementul curent
que.pop();//il scot din coada
for(unsigned int i=0;i<arcs[current].size();i++)//ii parcurg lista de vecini
{
if(dist[arcs[current][i]]==-1)//daca vecinul e nevizitat
{
dist[arcs[current][i]]=dist[current]+1;//distanta lui devine cea a tatalui +1
que.push(arcs[current][i]);//il pun in coada
max_chain_length=max(max_chain_length,dist[current]+1);
}
}
}
return max_chain_length+1;
}
void bfs_main()
{
int n,m,s;
ifstream fin("bfs.in");
fin>>n>>m>>s;
s--;
vector<vector<int>> arce(n);
int a,b;
for(int i=0;i<m;i++)
{
fin>>a>>b;
a--;b--;
arce[a].push_back(b);
}
graph g(n,m,arce);
g.bfs(s);
}
void dfs_main()
{
int n,m;
ifstream fin("dfs.in");
fin>>n>>m;
vector<vector<int>> arce(n);
int a,b;
for(int i=0;i<m;i++)
{
fin>>a>>b;
a--;b--;
arce[a].push_back(b);
arce[b].push_back(a);
}
graph g(n,m,arce);
g.componente_conexe();
}
void sort_top_main()
{
int m,n;
ifstream fin("sortaret.in");
fin>>n>>m;
vector<vector<int>> arce(n);
int a,b;
for(int i=0;i<m;i++)
{
fin>>a>>b;
a--;b--;
arce[a].push_back(b);
arce[b].push_back(a);
}
graph g(n,m,arce);
g.sortare_top();
}
void ctc_main()
{
int n,m;
ifstream fin("ctc.in");
fin>>n>>m;
vector<vector<int>> arce(n);
int a,b;
for(int i=0;i<m;i++)
{
fin>>a>>b;
a--;b--;
arce[a].push_back(b);
}
graph g(n,m,arce);
g.comp_tare_conexe();
}
void arce_critice_main()
{
int n,m;
ifstream fin("crit_conn.in");
fin>>n>>m;
vector<vector<int>> arce(n);
int a,b;
for(int i=0;i<m;i++)
{
fin>>a>>b;
//a--;b--;
arce[a].push_back(b);
}
graph g(n,m,arce);
g.critical_arcs();
}
void havel_hakimi_main()
{
int n;
vector<int> s;
ifstream fin("HavHak.in");
fin>>n;
int l;
for(int i=0;i<n;i++)
{fin>>l;s.push_back(l);}
graph g;
g=g.Havel_Hakimi(s);
g.print();
}
void disj_main()
{
ifstream fin("disjoint.in");
ofstream fout("disjoint.out");
int n,m;
graph g=graph();
fin>>n>>m;
vector<int> tati(n),rang(n);
rang.assign(n,1);
for(int i=0;i<n;i++)tati[i]=i;
for(int i=0;i<m;i++)g.disjoint_command(fin,fout,tati,rang);
}
void bellmanford_main()
{
int n,m;
ifstream fin("bellmanford.in");
ofstream fout("bellmanford.out");
fin>>n>>m;
vector<vector<pair<int,int> > > cost_arcs(n);
vector< vector<int>> arcs(n);
int x,y,c;
for(int i=0;i<m;i++)
{
fin>>x>>y>>c;
x--;
y--;
cost_arcs[x].push_back(make_pair(y,c));
arcs[x].push_back(y);
}
graph g(n,m,arcs,cost_arcs);
vector<int> out=g.bellman_ford();
if(g.get_negative_cycle())fout<<"Ciclu negativ!\n";
else for(int i=1;i<n;i++)
fout<<out[i]<<' ';
fout.close();
}
void dijkstra_main()
{
int n,m;
ifstream fin("dijkstra.in");
ofstream fout("dijkstra.out");
fin>>n>>m;
vector<vector<pair<int,int> > > cost_arcs(n);
vector< vector<int>> arcs(n);
int x,y,c;
for(int i=0;i<m;i++)
{
fin>>x>>y>>c;
x--;
y--;
cost_arcs[x].push_back(make_pair(y,c));
arcs[x].push_back(y);
}
graph g(n,m,arcs,cost_arcs);
vector<int> out=g.dijkstra();
for(int i=1;i<n;i++)
fout<<out[i]<<' ';
fout.close();
}
void apm_main()
{
int n,m;
ifstream fin("apm.in");
ofstream fout("apm.out");
fin>>n>>m;
vector<vector<pair<int,int> > > cost_arcs(n);
vector< vector<int>> arcs(n);
int x,y,c;
for(int i=0;i<m;i++)
{
fin>>x>>y>>c;
x--;
y--;
cost_arcs[x].push_back(make_pair(y,c));
arcs[x].push_back(y);
}
graph g(n,m,arcs,cost_arcs);
vector<vector<int>> out =g.apm();
fout<<g.get_apm_cost()<<'\n'<<g.get_apm_size()<<'\n';
for(int i=0;i<(int)out.size();i++)
for(auto it=out[i].begin();it!=out[i].end();it++)
fout<<i+1<<' '<<(*it)+1<< '\n';
fout.close();
}
void roy_floyd_main()
{
int n;
ifstream fin("royfloyd.in");
fin>>n;
vector<vector<pair<int,int> > > cost_arcs(n);
vector<vector<int> > arcs(n);
int c;
for(int x=0;x<n;x++)
{
for(int y=0;y<n;y++)
{
fin>>c;
arcs[x].push_back(y);
cost_arcs[x].push_back(make_pair(y,c));
}
}
graph g(n,n,arcs,cost_arcs);
g.roy_floyd();
g.print_distance_matrix("royfloyd.out");
fin.close();
}
void darb_main()
{
int n;
ifstream fin("darb.in");
ofstream fout("darb.out");
fin>>n;
vector<vector<int>> arce(n);
int a,b;
for(int i=0;i<n-1;i++)
{
fin>>a>>b;
a--;b--;
arce[a].push_back(b);
arce[b].push_back(a);
}
graph g(n,n-1,arce);
fout<<g.d_arb();
}
int main()
{
darb_main();
return 0;
}