Pagini recente » Cod sursa (job #2549321) | Sandbox (cutiuţa cu năsip) | Cod sursa (job #2375881) | Cod sursa (job #2208702) | Cod sursa (job #2808057)
#pragma clang diagnostic push
#pragma ide diagnostic ignored "modernize-use-transparent-functors"
#include <iostream>
#include <list>
#include <queue>
#include <vector>
#include <stack>
#include <fstream>
#include <map>
const int nMax = 100005;
using namespace std;
class DisjointSet {
private:
int m_parinte[nMax] = {}, m_dimensiune[nMax] = {};
public:
explicit DisjointSet(int n) {
for (int i = 1; i <= n; i++) {
m_parinte[i] = i;
m_dimensiune[i] = 1;
}
}
int cauta(int x) {
while (x != m_parinte[x]) {
x = m_parinte[x];
}
return x;
}
void uneste(int x, int y) {
int parinteX = cauta(x), parinteY = cauta(y);
if (m_dimensiune[parinteX] >= m_dimensiune[parinteY]) {
m_parinte[parinteY] = parinteX;
m_dimensiune[parinteX] += m_dimensiune[parinteY];
} else {
m_parinte[parinteX] = parinteY;
m_dimensiune[parinteY] += m_dimensiune[parinteX];
}
}
};
class Graf {
private:
int m_n, m_m;
vector<int> m_listAd[nMax];
vector<vector<int>> m_listaMuchii;
// DFS - https://www.infoarena.ro/problema/dfs
bool m_dfsViz[nMax] = {};
// BFS - https://www.infoarena.ro/problema/bfs
int m_bfsDist[nMax] = {};
queue<int> m_bfsQueue;
// CTC - https://www.infoarena.ro/problema/ctc
int m_ctcId[nMax] = {}, m_ctcLow[nMax] = {}, m_ctcUltId = 0;
bool m_ctcPeStiva[nMax] = {};
list<list<int>> m_ctc;
stack<int> m_ctcStack;
// Componente biconexe - https://www.infoarena.ro/problema/biconex
list<list<int>> m_biconexComps;
stack<int> m_biconexStack;
int m_biconexLow[nMax] = {};
// Muchii critice - https://leetcode.com/problems/critical-connections-in-a-network/
map<pair<int, int>, bool> m_criticeToRemove;
vector<vector<int>> m_critice;
int m_criticeLow[nMax] = {}; // Id-ul nodului minim in care te poti intoarce din nodul i
// ---------------- Functii private ----------------
void orientatCtcDFS(int x) {
m_ctcStack.push(x);
m_ctcPeStiva[x] = true;
m_ctcId[x] = m_ctcLow[x] = ++m_ctcUltId;
for (auto y: m_listAd[x]) {
// Nu am explorat nodul pana acum (neavand vreun id)
if (m_ctcId[y] == 0) {
orientatCtcDFS(y);
}
// Am intalnit un nod care inca nu a fost atribuit unei componente conexe.
// Poate nodul curent face parte din viitoarea componenta conexa, a carei (posibila) sursa
// a fost gasita de y.
if (m_ctcPeStiva[y]) {
m_ctcLow[x] = min(m_ctcLow[x], m_ctcLow[y]);
}
}
// Am ajuns la nodul de start al ctc-ului explorat in prezent
if (m_ctcId[x] == m_ctcLow[x]) {
list<int> compCurr;
while (true) {
auto y = m_ctcStack.top();
m_ctcStack.pop();
m_ctcPeStiva[y] = false;
compCurr.push_back(y);
if (y == x) break;
}
m_ctc.push_back(compCurr);
}
}
void neorientatBiconexAdd(int x, int y) {
// Creeaza o noua componenta pentru afisare
list<int> comp;
// Adauga in componenta toate nodurile pana la y, inclusiv y
while (m_biconexStack.top() != y) {
comp.push_back(m_biconexStack.top());
m_biconexStack.pop();
}
comp.push_back(y);
m_biconexStack.pop();
// Adauga in componenta si pe x, separat (in caz ca e un gap in stack intre y si x)
// ^ gap-ul poate aparea daca intalnim mai multe componente biconexe ce se intorc in acelasi nod
comp.push_back(x);
m_biconexComps.push_back(comp);
}
void neorientatBiconexDfs(int x, int prev, int id) {
// Initializam low-ul (nodul cel mai de sus din parcurgerea DFS in care putem ajunge)
// si punem nodul curent pe stack
m_biconexLow[x] = id;
m_biconexStack.push(x);
for (auto y: m_listAd[x]) {
// Ignoram cazul in care ne intoarcem din nodul in care am plecat
if (y == prev) continue;
// Nodul y nu a fost vizitat => viziteaza-l
if (!m_biconexLow[y]) {
// Viziteaza-l si actualizeaza low
neorientatBiconexDfs(y, x, id + 1);
m_biconexLow[x] = min(m_biconexLow[x], m_biconexLow[y]);
// Am ajuns la originea ciclului / am dat peste un nod de mai jos din parcurgerea
// DFS la care nu mai putem ajunge altfel (=> componenta biconexa)
if (m_biconexLow[y] >= id) {
neorientatBiconexAdd(x, y);
}
}
// Nodul y a fost vizitat => doar actualizeaza min-ul in caz ca e nevoie,
// fara sa risti sa afisezi o componenta biconexa de doua ori
else {
m_biconexLow[x] = min(m_biconexLow[x], m_biconexLow[y]);
}
}
}
void neorientatMuchiiCriticeDfs(int x, int prev, int id) {
m_criticeLow[x] = id;
for (auto y: m_listAd[x]) {
// Nu te intoarce in nodul din care ai plecat
if (y == prev) continue;
// Ruleaza DFS in continuare, cu un id mai mare
if (m_criticeLow[y] == 0) neorientatMuchiiCriticeDfs(y, x, id + 1);
// Nodul vizitat din cel curent face parte dintr-un ciclu,
// asa ca trebuie sa excludem muchia x-y
if (m_criticeLow[y] < id + 1) {
m_criticeToRemove[{x, y}] = m_criticeToRemove[{y, x}] = true;
}
// Actualizeaza low-ul nodului curent
m_criticeLow[x] = min(m_criticeLow[x], m_criticeLow[y]);
}
}
public:
// ---------------- Interfata publica ----------------
explicit Graf(int n = 0, int m = 0) : m_n(n), m_m(m) {}
/*************** Algoritmi generali ***************/
void DFS(int k) {
m_dfsViz[k] = true;
for (auto x: m_listAd[k]) {
if (!m_dfsViz[x]) {
DFS(x);
}
}
}
const auto &BFS(int start) {
m_bfsQueue.push(start);
m_bfsDist[start] = 1;
while (!m_bfsQueue.empty()) {
int curr = m_bfsQueue.front();
m_bfsQueue.pop();
for (auto i: m_listAd[curr]) {
if (m_bfsDist[i] == 0) {
m_bfsDist[i] = m_bfsDist[curr] + 1;
m_bfsQueue.push(i);
}
}
}
return m_bfsDist;
}
static bool potiConstruiGraf(vector<int> grade) {
// Algoritmul Havel-Hakimi
while (true) {
sort(grade.begin(), grade.end(), greater<int>());
if (grade[0] == 0) break;
if (grade[0] > grade.size() - 1) return false;
int maxVal = grade[0];
for (int i = 1; i <= maxVal; i++) {
grade[0]--;
grade[i]--;
if (grade[i] < 0) return false;
}
}
return true;
}
/*************** Grafuri neorientate ***************/
void neorientatCitesteListaMuchii(ifstream &in) {
for (int i = 0; i < m_m; i++) {
int x, y;
in >> x >> y;
m_listaMuchii.push_back({x, y});
}
}
void neorientatListaMuchiiToListaAdiacenta() {
for (auto &e: m_listaMuchii) {
m_listAd[e[0]].push_back(e[1]);
m_listAd[e[1]].push_back(e[0]);
}
}
void neorientatCitesteListaAdiacenta(ifstream &in) {
for (int i = 0; i < m_m; i++) {
int x, y;
in >> x >> y;
m_listAd[x].push_back(y);
m_listAd[y].push_back(x);
}
}
int neorientatNrCompConexe() {
int nrComp = 0;
for (int i = 1; i <= m_n; i++) {
if (!m_dfsViz[i]) {
nrComp++;
DFS(i);
}
}
return nrComp;
}
const auto &neorientatBiconexe() {
for (int i = 1; i <= m_n; i++) {
if (!m_biconexLow[i]) {
neorientatBiconexDfs(i, -1, 1);
}
}
return m_biconexComps;
}
const auto &neorientatMuchiiCritice() {
neorientatMuchiiCriticeDfs(0, -1, 1);
// In rezultat, punem muchiile ce nu au fost marcate ca trebuind sa fie sterse
for (auto &e: m_listaMuchii) {
if (!m_criticeToRemove[{e[0], e[1]}]) {
m_critice.push_back(e);
}
}
return m_critice;
}
/*************** Grafuri orientate ***************/
void orientatCitesteListaAdiacenta(ifstream &in) {
for (int i = 0; i < m_m; i++) {
int x, y;
in >> x >> y;
m_listAd[x].push_back(y);
}
}
const auto &orientatCtc() {
// Algoritmul lui Tarjan
for (int i = 1; i <= m_n; i++) {
// Nu am explorat nodul pana acum (neavand vreun id)
if (m_ctcId[i] == 0) {
orientatCtcDFS(i);
}
}
return m_ctc;
}
};
int main() {
// Input rapid
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
// I/O
ifstream in("disjoint.in");
ofstream out("disjoint.out");
int n, m;
in >> n >> m;
DisjointSet d(n);
for (int i = 0; i < m; i++) {
int cod, x, y;
in >> cod >> x >> y;
if (cod == 1) {
d.uneste(x, y);
} else if (cod == 2) {
out << ((d.cauta(x) == d.cauta(y)) ? "DA" : "NU") << "\n";
}
}
out.close();
return 0;
}
#pragma clang diagnostic pop