Cod sursa(job #2806837)

Utilizator Ion_ApeliaIon Apelia-Cosmina Ion_Apelia Data 23 noiembrie 2021 01:30:39
Problema Algoritmul Bellman-Ford Scor 10
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 9.99 kb
#include <iostream>
#include <vector>
#include <fstream>
#include <queue>
#include <list>
#include <stack>
#include <tuple>
#include <algorithm>
#include <queue>
#include <climits>

using namespace std;

#define MAX 100

// for DFS
bool visited_DFS[MAX];

//for SCC (CTC)
// stack <int> s;
// vector <int> edges_transp[MAX], comp[MAX];
// bool visited_DFS_transp_graph[MAX];

// files
ifstream in("bellmanford.in");
ofstream out("bellmanford.out");


class Graph {
private:

    int nrV;    //number of vertiges
    int nrE;    //number of edges
    bool oriented; // True if the graph is oriented
    vector <int> edges[MAX]; //adjacency list
    vector < vector < pair <int, int> > > weighted_edges; //adjacency list for weighted graph 
    
public:
    
    Graph(int x, int y, bool z) {nrV=x; nrE=y; oriented=z;}

    ///Tema 1
    void read_graph();  // read and make the actual graph

    void BFS( int s ); // s = start node

    void DFS( int s ); // used for DFS_conex_comp
    void DFS_conex_comp();

  /*  void get_transposed_graph(vector<int> edges_transp[]); //transposed graph used for SCC
    void DFS_SCC(int v, vector <int> edges_transp[], int nr, vector<int> comp); 
    void order_SCC(int v, bool visited_SCC[], stack<int> s);
    void SCC(); // Strongly Connected Components (CTC)
  */ 

    ///Tema 2
    void read_weighted_graph(); 

    int repr(int v, vector <int> &root);  //returneaza reprezentantul nodului v
    void link(int v1, int v2, vector <int> &height, vector <int> &root); //leaga arborele mai mic de cel mai mare
    void APM();

    void disj(); //Paduri de multimi disjuncte

    void Bellman_Ford(int s); //s-start node

};


 void Graph :: read_graph () {
    if (oriented==true)
    {
        for(int i = 1; i <= nrE; i++)
        {
            int x, y;
            in >> x >> y;
            edges[x].push_back(y);

        }
    }
    else
    {
            for(int i = 1; i <= nrE; i++)
        {
            int x, y;
            in >> x >> y;
            edges[x].push_back(y);
            edges[y].push_back(x);

        }
    }

}

void Graph :: read_weighted_graph(){

    weighted_edges.resize(nrV+1);
    if (oriented==true)
    {
        for(int i = 1; i <= nrE; i++)
        {
            int x, y, c;
            in >> x >> y >> c;
            weighted_edges[x].push_back(make_pair(y,c));
        }
    }
    else
    {
            for(int i = 1; i <= nrE; i++)
        {
            int x, y, c;
            in >> x >> y >> c;
            weighted_edges[x].push_back(make_pair(y,c));
            weighted_edges[y].push_back(make_pair(x,c));

        }
    }


}

void Graph :: BFS (int s) {
    vector <bool> visited (nrV+1, false);
    vector <int> distance (nrV+1, -1);
    queue <int> queue;  // coada pt bfs

    visited[s] = true;  // marchez nodul de start ca vizitat si il pun in coada
    distance[s] = 0;
    queue.push(s);

    while(!queue.empty())
    {
        int cv = queue.front();  //cv = current vertige
        queue.pop();
        // iau toate nodurile adiacente cu cv si, daca nu au fost vizitate, le marghez ca vizitate, le adaug in coada si calculez distanta de la s
        for( int i : edges[cv] )
            if(!visited[i])
            {
                visited[i] = true;
                
                queue.push(i);
                distance[i] = distance[cv] + 1;
            }
    }

    // pt fiecare nod afisez distanta de la s pana la el (ramane -1 daca nu a fost vizitat)
    for(int i = 1; i <= nrV; i++)
        out << distance[i] << " ";

}

void Graph :: DFS(int s){
    // functie apelata de DFS_conex_comp
    visited_DFS[s] = true;
    for( int i : edges[s] )
            if(!visited_DFS[i])
                DFS(i);
    
}

void Graph :: DFS_conex_comp(){
    int nr = 0;   // nr comp conexe
    for(int i=1; i<= nrV; i++)
        if(!visited_DFS[i])
        {
            DFS(i);
            nr++;
        }
    out << nr;
}

/*
void Graph :: get_transposed_graph(vector<int> edges_transp[]){
    for(int i = 1 ; i <= nrV ; i++)
        for(int j : edges[i])
            edges_transp[j].push_back(i);
    
}

void Graph :: order_SCC(int v, bool visited_SCC[], stack<int> s){
     visited_SCC[v] = true;
      for(int i : edges[v])
        if(!visited_SCC[i])
            order_SCC(i, visited_SCC, s);
    s.push(v);
}

void Graph :: DFS_SCC(int v, vector <int> edges_transp[], int nr, vector<int> comp){
    visited_DFS[v] = true;
    comp[nr].push_back(v);
    for(int i : edges_transp[v])
        if(!visited_DFS[i])
            DFS_SCC(i, edges_transp, nr, comp);

}

void Graph :: SCC(){
    //  Kosaraju's Algorithm -- O(V+E)
    int nr = 0;  //nr de componente tare conexe
    stack <int> s;
    vector <int> edges_transp[MAX], comp[MAX];
    bool visited_SCC [MAX] = {false}; 

    for(int i = 0; i < nrV; i++)
        if(visited_SCC[i] == false)
            order_SCC(i, visited_SCC, s);
    
    get_transposed_graph(edges_transp);

    for(int i = 0; i < nrV; i++)
        visited_SCC[i] = false;

    while (!s.empty())
    {
        int v = s.top();
        s.pop();
        if(!visited_SCC[v])
        {
            nr = nr+1;
            DFS_SCC(v, edges_transp, nr, comp);
            
        }
    }

}

*/

int Graph :: repr(int v, vector <int> &root){
    while (root[v] != v)
        v=root[v];
    return v;
}

void Graph :: link(int v1, int v2, vector <int> &height, vector <int> &root){
    int rv1=repr(v1, root);
    int rv2=repr(v2, root);
    
    if(height[rv1]>height[rv2])
        root[rv2]=rv1;
    else
        {
            root[rv1]=rv2;
            if(height[rv1]==height[rv2])
                height[rv2]++;
        }
}

void Graph :: APM (){
    //Kruskal
    int x, y, c;
    vector < tuple <int,int,int> > edges_weights_list; //vector (E1,E2,W)
    int cost_apm = 0;
    int nr = 0;  //numarul de muchii din APM la un moment dat (pt stop condition)
    vector <int> height(nrV+1, 1);  //inaltimea arborelui 
    vector <int> root(nrV+1);  //radacina arborelui
    vector <bool> edges(nrE+1,0);  //folosit pt a scrie la final muchiile din apm
    
    // formez vectorul de muchii si costuri
    for(int i=0; i<nrE; ++i)
    {
        in>>x>>y>>c;
        edges_weights_list.push_back(make_tuple(x,y,c));
    }

    for(int i=1; i<=nrV; ++i)
        root[i]=i;

    // sortare muchii dupa cost
    sort (edges_weights_list.begin(), edges_weights_list.end(),
            [](const tuple<int, int, int> &c1, const tuple<int, int, int> &c2) { return get<2>(c1) < get<2>(c2); });

    //Iau pe rand muchiile din vector si verific daca formeaza un ciclu cu apm-ul format
    //pana in momentul i; Daca nu formeaza un ciclu includ muchia in APM. 
    // Repet pasul anterior pana am nrV-1 muchii in apm

    for(int i=0; i<nrE && nr<nrV-1; i++)
    {
        int v1=get<0>(edges_weights_list[i]);
        int v2=get<1>(edges_weights_list[i]);
        int cost=get<2>(edges_weights_list[i]);

        int rv1 = repr(v1, root);
        int rv2 = repr(v2, root);

        if(rv1 != rv2)  //daca nu fac parte din aceeasi comp conexa
        {
            nr++;
            link(v1,v2,height,root);
            cost_apm=cost_apm+cost;
            edges[i]=1;     
        }


    }

    out<< cost_apm<<'\n'<<nr <<'\n';
    for (int i=0; i<nrE; i++)
        if(edges[i])
            out<<get<0>(edges_weights_list[i])<<' '<< get<1>(edges_weights_list[i])<<'\n';



}

void Graph :: disj(){
    //rezolvare cu arbori

    //OBS!!! n si m, nr de multimi si nr de operatii au fost citite in main 
    // si folosite de constructor pt a initializa graful, deci sunt nrV si nrE
    int cod, x, y;
    vector <int> height(nrV+1, 1), root(nrV+1);

    //in>>n>>m;
    //cout<<nrV<<' '<<nrE;

    for(int i=0; i<nrV; i++)
        root[i]=i;


    for(int i=0; i<nrE; i++)
    {
        in>>cod>>x>>y;
        if(cod==1)
            link(x,y,height,root); //refolosesc functia de la apm
        else
        {
            int reprx=repr(x,root); //reprezentantul lui x (vezi functia de la APM)
            int repry=repr(y,root);
            if (reprx == repry)
                out<<"DA\n";
            else out<<"NU\n";
        }

    }
    

}

void Graph :: Bellman_Ford(int s){

    const int inf = INT_MAX;  
    bool negative_cycle = false; 
    vector <int> distance (nrV + 1, inf); //distante
    vector <bool> in_queue (nrV + 1, false); // nodul x e sau nu in coada
    vector <int> passes (nrV + 1, 0); //retine de cate ori am trecut printr-un nod
    queue <int> queue; //nodurile ale caror distanta s-a modificat (pt optimizare)
    
    distance[s]=0;
    queue.push(s);
    in_queue[s] = true;

    while(queue.empty() == false && negative_cycle == false)
    {
        int v1=queue.front();
        queue.pop();
        in_queue[v1]=0;
        for(int i=0; i<weighted_edges[v1].size(); i++)
        {
            int v2 = get <0> (weighted_edges[v1][i]);
            int c = get <1> (weighted_edges[v1][i]);
            if(distance[v2]>distance[v1]+c) //relaxez muchia
            {
                distance[v2]=distance[v1]+c;
                passes[v2]++;
                if(!in_queue[v2])
                {
                    queue.push(v2);
                    in_queue[v2]=true;

                }

                if(passes[v2]>=nrV)
                negative_cycle=true;
            }


        }

    }

    if(negative_cycle == true)
        out<<"Ciclu negativ!";
    else
        for(int i=0; i<nrV; i++)
            if(i != s)
                out<<distance[i]<<' ';
    


}

int main()
{

    int n; int m;
    in>>n>>m;

    Graph g2(n,m,1);
    //g2.read_graph();

    //g2.BFS(s);
    //g2.DFS_conex_comp();

    //g2.APM();
    //g2.disj();

    g2.read_weighted_graph();
    cout<<"abc";
    g2.Bellman_Ford(1);

    in.close();
    out.close();

return 0;
}