#include <iostream>
#include <vector>
#include <fstream>
#include <queue>
#include <list>
#include <stack>
#include <tuple>
#include <algorithm>
using namespace std;
#define MAX 100001
// for DFS
bool visited_DFS[MAX];
//for SCC (CTC)
// stack <int> s;
// vector <int> edges_transp[MAX], comp[MAX];
// bool visited_DFS_transp_graph[MAX];
// files
ifstream in("disjoint.in");
ofstream out("disjoint.out");
class Graph {
private:
int nrV; //number of vertiges
int nrE; //number of edges
bool oriented; // True if the graph is oriented
vector <int> edges[MAX]; //adjacency list
vector < vector < pair <int, int> > > weighted_edges; //adjacency list for weighted graph
public:
Graph(int x, int y, bool z) {nrV=x; nrE=y; oriented=z;}
///Tema 1
void read_graph(); // read and make the actual graph
void BFS( int s ); // s = start node
void DFS( int s ); // used for DFS_conex_comp
void DFS_conex_comp();
/* void get_transposed_graph(vector<int> edges_transp[]); //transposed graph used for SCC
void DFS_SCC(int v, vector <int> edges_transp[], int nr, vector<int> comp);
void order_SCC(int v, bool visited_SCC[], stack<int> s);
void SCC(); // Strongly Connected Components (CTC)
*/
///Tema 2
void read_weighted_graph();
int repr(int v, vector <int> &root); //returneaza reprezentantul nodului v
void link(int v1, int v2, vector <int> &height, vector <int> &root); //leaga arborele mai mic de cel mai mare
void APM();
void disj(); //Paduri de multimi disjuncte
void Bellman_Ford(int s); //s-start node
};
void Graph :: read_graph () {
if (oriented==true)
{
for(int i = 1; i <= nrE; i++)
{
int x, y;
in >> x >> y;
edges[x].push_back(y);
}
}
else
{
for(int i = 1; i <= nrE; i++)
{
int x, y;
in >> x >> y;
edges[x].push_back(y);
edges[y].push_back(x);
}
}
}
void Graph :: read_weighted_graph(){
if (oriented==true)
{
for(int i = 1; i <= nrE; i++)
{
int x, y, c;
in >> x >> y >> c;
weighted_edges[x].push_back(make_pair(y,c));
}
}
else
{
for(int i = 1; i <= nrE; i++)
{
int x, y, c;
in >> x >> y >> c;
weighted_edges[x].push_back(make_pair(y,c));
weighted_edges[y].push_back(make_pair(x,c));
}
}
}
void Graph :: BFS (int s) {
vector <bool> visited (nrV+1, false);
vector <int> distance (nrV+1, -1);
queue <int> queue; // coada pt bfs
visited[s] = true; // marchez nodul de start ca vizitat si il pun in coada
distance[s] = 0;
queue.push(s);
while(!queue.empty())
{
int cv = queue.front(); //cv = current vertige
queue.pop();
// iau toate nodurile adiacente cu cv si, daca nu au fost vizitate, le marghez ca vizitate, le adaug in coada si calculez distanta de la s
for( int i : edges[cv] )
if(!visited[i])
{
visited[i] = true;
queue.push(i);
distance[i] = distance[cv] + 1;
}
}
// pt fiecare nod afisez distanta de la s pana la el (ramane -1 daca nu a fost vizitat)
for(int i = 1; i <= nrV; i++)
out << distance[i] << " ";
}
void Graph :: DFS(int s){
// functie apelata de DFS_conex_comp
visited_DFS[s] = true;
for( int i : edges[s] )
if(!visited_DFS[i])
DFS(i);
}
void Graph :: DFS_conex_comp(){
int nr = 0; // nr comp conexe
for(int i=1; i<= nrV; i++)
if(!visited_DFS[i])
{
DFS(i);
nr++;
}
out << nr;
}
/*
void Graph :: get_transposed_graph(vector<int> edges_transp[]){
for(int i = 1 ; i <= nrV ; i++)
for(int j : edges[i])
edges_transp[j].push_back(i);
}
void Graph :: order_SCC(int v, bool visited_SCC[], stack<int> s){
visited_SCC[v] = true;
for(int i : edges[v])
if(!visited_SCC[i])
order_SCC(i, visited_SCC, s);
s.push(v);
}
void Graph :: DFS_SCC(int v, vector <int> edges_transp[], int nr, vector<int> comp){
visited_DFS[v] = true;
comp[nr].push_back(v);
for(int i : edges_transp[v])
if(!visited_DFS[i])
DFS_SCC(i, edges_transp, nr, comp);
}
void Graph :: SCC(){
// Kosaraju's Algorithm -- O(V+E)
int nr = 0; //nr de componente tare conexe
stack <int> s;
vector <int> edges_transp[MAX], comp[MAX];
bool visited_SCC [MAX] = {false};
for(int i = 0; i < nrV; i++)
if(visited_SCC[i] == false)
order_SCC(i, visited_SCC, s);
get_transposed_graph(edges_transp);
for(int i = 0; i < nrV; i++)
visited_SCC[i] = false;
while (!s.empty())
{
int v = s.top();
s.pop();
if(!visited_SCC[v])
{
nr = nr+1;
DFS_SCC(v, edges_transp, nr, comp);
}
}
}
*/
int Graph :: repr(int v, vector <int> &root){
while (root[v] != v)
v=root[v];
return v;
}
void Graph :: link(int v1, int v2, vector <int> &height, vector <int> &root){
int rv1=repr(v1, root);
int rv2=repr(v2, root);
if(height[rv1]>height[rv2])
root[rv2]=rv1;
else
{
root[rv1]=rv2;
if(height[rv1]==height[rv2])
height[rv2]++;
}
}
void Graph :: APM (){
//Kruskal
int x, y, c;
vector < tuple <int,int,int> > edges_weights_list; //vector (E1,E2,W)
int cost_apm = 0;
int nr = 0; //numarul de muchii din APM la un moment dat (pt stop condition)
vector <int> height(nrV+1, 1); //inaltimea arborelui
vector <int> root(nrV+1); //radacina arborelui
vector <bool> edges(nrE+1,0); //folosit pt a scrie la final muchiile din apm
// formez vectorul de muchii si costuri
for(int i=0; i<nrE; ++i)
{
in>>x>>y>>c;
edges_weights_list.push_back(make_tuple(x,y,c));
}
for(int i=1; i<=nrV; ++i)
root[i]=i;
// sortare muchii dupa cost
sort (edges_weights_list.begin(), edges_weights_list.end(),
[](const tuple<int, int, int> &c1, const tuple<int, int, int> &c2) { return get<2>(c1) < get<2>(c2); });
//Iau pe rand muchiile din vector si verific daca formeaza un ciclu cu apm-ul format
//pana in momentul i; Daca nu formeaza un ciclu includ muchia in APM.
// Repet pasul anterior pana am nrV-1 muchii in apm
for(int i=0; i<nrE && nr<nrV-1; i++)
{
int v1=get<0>(edges_weights_list[i]);
int v2=get<1>(edges_weights_list[i]);
int cost=get<2>(edges_weights_list[i]);
int rv1 = repr(v1, root);
int rv2 = repr(v2, root);
if(rv1 != rv2) //daca nu fac parte din aceeasi comp conexa
{
nr++;
link(v1,v2,height,root);
cost_apm=cost_apm+cost;
edges[i]=1;
}
}
out<< cost_apm<<'\n'<<nr <<'\n';
for (int i=0; i<nrE; i++)
if(edges[i])
out<<get<0>(edges_weights_list[i])<<' '<< get<1>(edges_weights_list[i])<<'\n';
}
void Graph :: disj(){
//rezolvare cu arbori
//OBS!!! n si m, nr de multimi si nr de operatii au fost citite in main
// si folosite de constructor pt a initializa graful, deci sunt nrV si nrE
int cod, x, y;
vector <int> height(nrV+1, 1), root(nrV+1);
//in>>n>>m;
cout<<nrV<<' '<<nrE;
for(int i=0; i<nrV; i++)
root[i]=i;
for(int i=0; i<nrE; i++)
{
in>>cod>>x>>y;
if(cod==1)
link(x,y,height,root); //refolosesc functia de la apm
else
{
int reprx=repr(x,root); //reprezentantul lui x
int repry=repr(y,root);
if (reprx == repry)
out<<"DA\n";
else out<<"NU\n";
}
}
}
void Graph :: Bellman_Ford(int s){
}
int main()
{
int n; int m;
in>>n>>m;
Graph g2(n,m,0);
//g2.read_graph();
//g2.BFS(s);
//g2.DFS_conex_comp();
//g2.APM();
g2.disj();
in.close();
out.close();
return 0;
}