Cod sursa(job #2805645)

Utilizator Tache_RoxanaTache Roxana Tache_Roxana Data 21 noiembrie 2021 16:39:35
Problema Diametrul unui arbore Scor 90
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 10.83 kb
#include <iostream>
#include <fstream>
#include <vector>
#include <deque>
#include <stack>
#include <tuple>
#include <queue>
#include <list>
#include <algorithm>

using namespace std;

class Graph {
    struct nodeStruct {
        int node1, node2, cost;
        bool operator()(nodeStruct const& n1, nodeStruct const& n2) { return n1.cost > n2.cost; }
    };
    vector<list<nodeStruct>> adjacent;
    vector<list<nodeStruct>> transposed() {
        vector<list<nodeStruct>> ret(adjacent.size());
        for(int i = 0; i < adjacent.size(); i++)
            for(nodeStruct node: adjacent[i])
                ret[node.node2].push_back(nodeStruct({i, node.cost}));
        return ret;
    }
    void dfs(int &current, vector<bool>&visited, stack<int> &order) {
        visited[current] = true;
        for(auto i: adjacent[current])
            if(!visited[i.node2])
                dfs(i.node2, visited, order);
        order.push(current);
    }
    void bfs(int &start, vector<int> &costs, vector<bool> &visited, deque<int> &queue, int &diameter) {
        queue.push_back(start);
        visited[start] = true;
        costs[start] = 0;
        while(queue.empty() != 1) {
            const int current = queue.front();
            for(auto i: adjacent[current])
                if(!visited[i.node2]) {
                    costs[i.node2] += (costs[current] + 1);
                    diameter = costs[i.node2];
                    visited[i.node2] = true;
                    start = i.node2;
                    queue.push_back(i.node2);
                }
            queue.pop_front();
        }
    }
    void _biconnected(int &node, int parent, vector<bool> &visited, vector<int> &level, vector<int> &minLevel, stack<int> &s, vector<vector<int>> &components, vector<pair<int,int>> &criticalEdges) {
        visited[node] = true;
        minLevel[node] = level[node] = level[parent] + 1;
        s.push(node);
        for (auto x: adjacent[node])
            if (x.node2 != parent) {
                if (visited[x.node2])
                    minLevel[node] = min(minLevel[node], level[x.node2]);
                else {
                    _biconnected(x.node2, node, visited, level, minLevel, s, components, criticalEdges);
                    minLevel[node] = min(minLevel[node], minLevel[x.node2]);
                    if(level[node] < minLevel[x.node2])
                        criticalEdges.emplace_back(node, x.node2);
                    if (minLevel[x.node2] >= level[node]) {
                        components.resize(components.size()+1);
                        while (s.top() != x.node2) {
                            components[components.size()-1].push_back(s.top());
                            s.pop();
                        }
                        components[components.size()-1].push_back(x.node2);
                        s.pop();
                        components[components.size()-1].push_back(node);
                    }
                }
            }
    }
    void _hardConnected(int &node, vector<bool> &visited, vector<vector<int>> &components, vector<list<nodeStruct>> &t) {
        visited[node] = false;
        components[components.size() - 1].push_back(node);
        for(auto j: t[node])
            if(visited[j.node2])
                _hardConnected(j.node2, visited, components, t);
    }
    int findParent(int &node, vector<int> &parent) {
        if(node == parent[node])
            return node;
        return findParent(parent[node], parent);
    }
    bool _hasPath(int &current, int &target, vector<bool> &visited) {
        if(visited[current])
            return false;
        visited[current] = true;
        if(current == target)
            return true;
        for(auto i: adjacent[current])
            if(_hasPath(i.node2, target, visited))
                return true;
        return false;
    }
public:
    Graph(vector<tuple<int, int, int>> &data, int nrNodes, bool oriented=true) {
        adjacent.resize(nrNodes);
        for(auto[node1, node2, cost]: data) {
            adjacent[node1].push_back(nodeStruct({node1, node2, cost}));
            if(!oriented)
                adjacent[node2].push_back(nodeStruct({node2, node1, cost}));
        }
    }
    Graph(int nrNodes) { adjacent.resize(nrNodes); }
    friend ostream& operator<< (ostream& os, Graph graph) {
        os << graph.adjacent.size() << " nodes\n";
        for(int i = 0; i < graph.adjacent.size(); i++) {
            os << "node " << i + 1 << ": ";
            for(nodeStruct j: graph.adjacent[i])
                os << "(" << j.node2 + 1 << ", " << j.cost << ") ";
            os << "\n";
        }
        return os;
    }
    int connected() {
        vector<bool> visited(adjacent.size());
        int nr = 0;
        for(int i = 0; i < adjacent.size(); i++)
            if(!visited[i]) {
                stack<int> _;
                nr++;
                dfs(i, visited, _);
            }
        return nr;
    }
    pair<vector<int>, vector<bool>> costs(int start) {
        vector<int> costs(adjacent.size());
        vector<bool> visited(adjacent.size());
        deque<int> queue;
        int _;
        bfs(start, costs, visited, queue, _);
        return make_pair(costs, visited);
    }
    stack<int> topologicalSort() {
        vector<bool> visited(adjacent.size());
        stack<int> order;
        for(int i = 0; i < adjacent.size(); i++)
            if(!visited[i])
                dfs(i, visited, order);
        return order;
    }
    pair<vector<vector<int>>, vector<pair<int,int>>> biconnected(){
        stack<int> s;
        vector<int> level(adjacent.size()), minLevel(adjacent.size());
        vector<bool> visited(adjacent.size());
        vector<vector<int>> components;
        vector<pair<int,int>> criticalEdges;
        for (int i = 0; i < adjacent.size(); i++)
            if (visited[i] == 0)
                _biconnected(i, 0, visited, level, minLevel, s, components, criticalEdges);
        return make_pair(components, criticalEdges);
    }
    vector<vector<int>> hardConnected() {
        stack<int> s;
        vector<bool> visited(adjacent.size());
        vector<vector<int>> components;
        vector<list<nodeStruct>> t = transposed();
        for(int i = 0; i < adjacent.size(); i++)
            if(!visited[i])
                dfs(i, visited, s);
        while(!s.empty()){
            if(visited[s.top()]){
                components.resize(components.size() + 1);
                _hardConnected(s.top(), visited, components, t);
            }
            s.pop();
        }
        return components;
    }
    vector<int> dijkstra(int start) {
        vector<int> visited(adjacent.size()), distance(adjacent.size(), -1);
        priority_queue<nodeStruct, vector<nodeStruct>, nodeStruct> costs;
        vector<pair<int, int>> apm;
        costs.push({start, 0});
        distance[start] = 0;
        int cost = 0;
        while(costs.empty() != 1) {
            int node = costs.top().node2;
            costs.pop();
            if(!visited[node])
                for(auto i: adjacent[node]){
                    if(!visited[i.node2])
                        if(distance[i.node2] == -1 || distance[i.node2] > i.cost + distance[node]){
                            distance[i.node2] = i.cost + distance[node];
                            costs.push({i.node2, distance[i.node2]});
                        }
                }
            visited[node] = 1;
        }
        return distance;
    }
    pair<vector<int>, bool> bellmanFord(int start) {
        const int inf = 250001;
        vector<int> visited(adjacent.size()), distance(adjacent.size(), inf);
        priority_queue<nodeStruct, vector<nodeStruct>, nodeStruct> costs;
        costs.push({start, 0});
        distance[start] = 0;
        while(costs.empty() != 1) {
            int node = costs.top().node2;
            costs.pop();
            for(auto i: adjacent[node]){
                if(distance[i.node2] == inf || distance[i.node2] > i.cost + distance[node]){
                    distance[i.node2] = i.cost + distance[node];
                    costs.push({i.node2, distance[i.node2]});
                    visited[node]++;
                    if(visited[i.node2] >= adjacent.size())
                        return make_pair(distance, 1);
                }
            }
            visited[node]++;
        }
        return make_pair(distance, 0);
    }
    pair<vector<nodeStruct>, int> minimumTreeKruskall() {
        priority_queue<nodeStruct, vector<nodeStruct>, nodeStruct> sortedEdges;
        vector<int> parents(adjacent.size());
        vector<nodeStruct> mst;
        int cost = 0;
        for(int i = 0; i < parents.size(); i++)
            parents[i] = i;
        for(int i = 0; i < adjacent.size(); i++)
            for(auto j: adjacent[i])
                sortedEdges.push(j);
        while(!sortedEdges.empty()) {
            nodeStruct node = sortedEdges.top();
            int parent1 = findParent(node.node1, parents);
            int parent2 = findParent(node.node2, parents);
            if(parent1 != parent2) {
                cost += node.cost;
                mst.push_back(node);
                parents[parent1] = parents[parent2];
            }
            sortedEdges.pop();
        }
        return make_pair(mst, cost);
    }
    int diameter() {
        vector<int> costs(adjacent.size());
        vector<bool> visited(adjacent.size());
        deque<int> queue;
        int current = 0, diameter;
        bfs(current, costs, visited, queue, diameter);
        fill(costs.begin(), costs.end(), 0);
        fill(visited.begin(), visited.end(), 0);
        bfs(current, costs, visited, queue, diameter);
        return diameter;
    }
    void insertEdge(int node1, int node2, int cost, bool oriented = true) {
        adjacent[node1].emplace_back(nodeStruct{node1, node2, cost});
        if(!oriented)
            adjacent[node2].emplace_back(nodeStruct{node2, node1, cost});
    }
    bool hasPath(int current, int target) {
        vector<bool> visited(adjacent.size());
        return _hasPath(current, target, visited);
    }
};

//main for disjoind set
//{
//    int nrNodes, nrCommands;
//    in >> nrNodes >> nrCommands;
//    Graph g(nrNodes);
//    for(int i = 0; i < nrCommands; i++) {
//        int command, node1, node2;
//        in >> command >> node1 >> node2;
//        if(command == 1)
//          g.insertEdge(node1 - 1, node2 - 1, 0, false);
//        else {
//            if(g.hasPath(node1 - 1, node2 - 1))
//                 out<<"DA\n";
//            else
//                out<<"NU\n";
//        }
//    }
//}

int main() {
    ifstream in("darb.in");
    ofstream out("darb.out");
    vector<tuple<int, int, int>> data;
    int nrNodes, nrEdges;
    in >> nrNodes;
    nrEdges = nrNodes - 1;
    for(int i = 0; i < nrEdges; i++) {
        int aux1, aux2, cost;
        in >> aux1 >> aux2; //>> cost;
        data.emplace_back(aux1 - 1, aux2 - 1, 0);
        data.emplace_back(aux2 - 1, aux1 - 1, 0);
    }
    Graph g(data, nrNodes);
    out << g.diameter() + 1;
    return 0;
}