Pagini recente » Cod sursa (job #3235284) | Borderou de evaluare (job #2137029) | Cod sursa (job #2312258) | Cod sursa (job #2716534) | Cod sursa (job #2711859)
#include <bits/stdc++.h>
using namespace std;
ifstream f("radiatie.in");
ofstream g("radiatie.out");
const int NMAX = 15005;
const int LMAX = 10;
const int inf = 1e9;
int n,m,Q;
int dist[NMAX],viz[NMAX], from[NMAX], grad[NMAX], father[NMAX];
vector < pair < int, int > > v[NMAX], nv[NMAX];
priority_queue < pair < int, int > > q;
int k,euler[2 * NMAX], lvl[NMAX], pos[NMAX];
int rmq[LMAX][2 * NMAX], lg[2 * NMAX];
void dfs(int node, int level){
euler[++k] = node;
lvl[node] = level;
pos[node] = k;
for(auto it : nv[node])
if(!lvl[it.first]){
father[it.first] = node;
dfs(it.first, level + 1);
euler[++k] = node;
}
}
void buildRMQ(){
int i,j;
for(i = 1 ; i <= k ; i++)
rmq[0][i] = euler[i];
for(i = 2 ; i <= k ; i++)
lg[i] = lg[i / 2] + 1;
for(i = 1 ; i <= lg[k] ; i++)
for(j = 1 ; j <= k - (1 << i) ; j++){
rmq[i][j] = rmq[i - 1][j];
if(lvl[rmq[i - 1][j + (1 << (i - 1))]] < lvl[rmq[i - 1][j]])
rmq[i][j] = rmq[i - 1][j + (1 << (i - 1))];
}
}
int lca(int x, int y){
x = pos[x];
y = pos[y];
if(x > y)
swap(x,y);
int dif = y - x + 1, l = lg[dif];
if(lvl[rmq[l][x]] < lvl[rmq[l][y - (1 << l) + 1]])
return rmq[l][x];
return rmq[l][y - (1 << l) + 1];
}
int main(){
int i,j,x,y,z,node;
f >> n >> m >> Q;
for(i = 1 ; i <= m ; i++){
f >> x >> y >> z;
v[x].push_back({y, z});
v[y].push_back({x, z});
}
for(i = 1 ; i <= n ; i++)
dist[i] = inf;
q.push({0,1});
from[1] = -1;
while(!q.empty()){
node = q.top().second;
q.pop();
if(viz[node])
continue;
viz[node] = 1;
if(from[node] != -1){
nv[node].push_back({from[node], dist[node]});
nv[from[node]].push_back({node, dist[node]});
}
for(auto it: v[node]){
if(viz[it.first]) continue;
if(dist[it.first] > it.second){
dist[it.first] = it.second;
from[it.first] = node;
q.push({-it.second, it.first});
}
}
}
dfs(1,1);
buildRMQ();
while(Q--){
f >> x >> y;
int l = lca(x,y), ans = 0;
while(x != l){
ans = max(ans, dist[x]);
x = father[x];
}
while(y != l){
ans = max(ans, dist[y]);
y = father[y];
}
g << ans << "\n";
}
return 0;
}